
ffi.m.ffi

Introduction to RTL/2

-Kffi Tffiffi ffiTHER PAR
rcPffiru r

-ffi
ffiffifu

%-rK (&NY TOP, RE

TK RWffiYS; o/oIA

'Np rc"ffip ARRAY BY
qh#T"#AKRAY (rô) tN

pwffi & ffiËTR, xPT
sîrR{"dffiY*JR.A OtrYw{ffi #TACK. lT I

'&? ffiYTffi HX'.=tt o
8 effi tr#N#L AND !
€(flffim"&#{gT-ts
'#ffi-PT.R# aiGO I.o€p# mV-*- I TO O

4 ffiKffiffiMS N TH
mLry *n*ffiu) 'l RNAME
#Mtu(R-} &TB*F M4

#m.ryqËT:{f,:X,
ffiffiffiFffiR{. 1)t=f n}

mffi fu& &{--2- rLFîAf
'Rmffi;Wære7PO' ;#ffiffi) RE

-#fNeFwffi f,mff LI4.
K I w,P ffi,û-ÉElF P
#ffi #R PTR=l2'f

j#MNT*îffi RTI-C.T (O)
d ffiryp y-F#ffi,}..| nAG:

,#M Y-ffiAT^ E} MARS

ïru ffiffiâ*
r&ffiffiu

Tru ffiffiL
rffimtr

iffiffiffit
jffiffimr

,ruffiffir
jffiffimr

Jffiffiffi{
4ffiffiffffirïd+æ#s ffiOTo

rqilfi r3r

qD

INTERNATICNAL

RTLI2 h ig h - level computer language
was designed and developed by
I mperial Chemical I ndustries Limited
RTLI2 software for use in conjunction with
Digital Equipment Corporation PD P -1 1,
IBM System 360 1370 and ICL System 4 computers
is marketed in the U K and Western Europe by
SPL International
12-1 4 Windmill Street, London W1 P 1 H F.

is a trade mark of
lmperial Chemical Industries Limited, England.

Introduction
Rf Ll2 is a high-level programming language. lt is designed for use in real-time
computing and is especially suited for the programming of on-line data collection,
communication and contrcl systems. The language is independent of particulartypes
of hardware and is practical to use on small computers. Advantages in use include
lower programming costs, faster implementation and improved software reliability.

RTL/2 (Real Trme Language) was developed in the Corporate Laboratory of
lmperial Chemical lndustries Limited. England. The projectwas initiated in 1 969
following some earlier exploratory work. The objective was to develop an improved
method of programming real-time computer applications as an essential step
towards full exploitation of low cost hardware. To be effective the method had to be
capable of generating compact and highly reliable multi-task software on a wide
range of computers.

A prototype language RTL/1 was implemented in 1 970 and was employed
successfully in two major process control applications. RTL/2 was defined in 1 971
and its first compilers were made available early in1972. Since then Rf Ll2 has been
in regular use by lCl computer application teams and has achieved its full design
objectives. The basic language definition is therefore frozen and there are no plans
for further extension or modif ication.

The range of supporting software will continue to develop and includes ;

tt compilersandlinkersfortranslatingRfL/2 programsintocodefordifferenttypes
of computer.

âÊ system standards and software to aid the development and running of Rf L/2
programs.

* RTL/2 library programs.

lnformation on RTL/2 documentation and software items currentlv available is
included in the pocket ofthis manual.

A brief description of the RTL/2 language and its application follows.

RTL/2 Reference: 2 @ lmperial Chemical Industries Limited 1974

PURPOSE BUII.T

R ELIAB LE

EFFICIENT

FI-EXIB LE

PRACTICAI-

RTL/z IS NOT

Key Features
RTLI2 is specifically designed for use in a real-time environment. lt can be used for
conventional programming, but incorporates basic features that are particularly
important for the programming of on-line computer applications.

abif ityto expressmulti-fask programs in which activities proceed in parallel
All code is re-entrant and tasks may have identifiable private data areas ; these,
together with hig h - level su pervisor ca lls. provide the basis f or eff icient task control
and interaction. They simplif}, 16" planning and writing of software for computer
systems that have to respond automatically to external events.

h i g h f y develo ped saf e g u ards aga i nst program m i ng error
The language structure enables stringent checks to be applied automatically during
compiling and linking of programs; it also provides for efficient run-time checking
and error recovery. These are essential for real-time applications in which errors
may cause irretrievable loss of data or product and are diff icult to reproduce for
diagnostic purposes.

abif ityto generate compact code with low run-time overheads
Variables and data structures are designed for economic handling of real-time data
and communications ;they include bytes, fraction variables and record structures.
Reference, or "pointer", variables enable f urther structures such as lists and queues
to be created and lead to efficient use of modern hardware for data accessing and
orocedure calls.

ahighly modular program structure
Interfaces between modules are explicitly defined and can be checked forvalid
correspondence. This aids overall software management and safe modification of
on-line programs.

ease of application
Rf L/2 is a well-defined language ; it can be taught in a few days and the absence
of ad hoc rules and restrictions makes it easyto remember. The notation is
conventional and can be typed on standard keyboard equipment. The 'size' of the
language makes it feasible to compile on a typical 1 6 K computer.

The above combination of features reflects the factthat RTL/2 has been specifically
engineered for real-time programming.

simply a variant or subset of an existing data-processing language. for use on small
computers.

a set of extensions to an existing language, implemented by means of an operating
system that has to be provided on every computer.

specific to process control (although many of its early applications were in this
f ield).

dependent on a particular type of computer or standard software system.

an unproven language proposalyetto be implemented.

SPECIAL SYSTEMS

OPERATING SYSTEMS

APPLICATION
PROGRAMS

STAhI DAR D
,PACKAG ES

APPLICATION
PROGRAMMING

SOFTWAREAIDS

Applications
RTLI2 comes into its own on real-time apqlications, especially (but not exclusively)
where small computers are involved. This field typically includes svstems for
communications, commercial data entry. process control and factory automation.
traffic control, and the monitoring and analysis of research data. lt also includes the
wide range of special systems produced by OEM suppliers.

Within this field, RTL/2 may be used at various levels .

for programming special systems
Rf L/2 programs need very little additional software at run-time. Thus minicomouter
applications not requiring a full range of system facilities need not incur the
overheads ; they can be programmed directly in RTL/2. The software develooment
is done on a larger and more convenient off-line machine.

for writing standard operating systems
Task supervisors, standard input/output drivers and utilities can be built up in a
modularfashion using the minimum of assembly code; real-time operating systems
are in use for which 9 5% of the code has been generated from RrL/2. Such systems
are easierto understand and adapt to special requirements -for example, addition of
an interfac_e to a_special l/O device or to another computer. To the extent that they are
written in RTL/2. they are also less machine-dependent.

lor a ppl ication p rogra mming
Real-time application programs will generally define a set of tasks to be scheduled
and serviced by an operating system. The latter may be a system written in RTL/2 or
a supplier's standard system to which RTL/2 has been interfaced. Application
programs communicate with the system through RTL/2 procedures and supervisor
cal ls ; the recommende d RT L/ 2 standards for | / O and error recovery apply to both
single-task and multi-task systems.

for writing standard packages
These include, for example, standard programs for process control and sequencing,
or for implementing conversational systems.

The use of RTL/2 is not confined to real-time systems or small computers. lt may
also be used :

Ior ge n era I a pplication pro g ram m ing
Although RT L/ 2 is not designed for the same purpose as FO RTRAN or ALGO L its
algorithmic faci I ities compare favourably with such languages.

for writing system utilities and various software aids
The data structures and character handling in RTL/2 enable itto be considered as an
alternative to assembly code for system prggramming. The re-entrancy and other
real-time features are also relevant.

RTLI2 compilers are themselves written in RTL/2.

PLAN NING

WRITING.
COMPILING
E ASSEM BLY

COMMISSIONING

MAINTENANCE &
POST.DEVELOPM ENT

Practical Benefits
Rf Ll2 offers the usual advantages of a high-level language over assembly code :

cheaper, quicker and better documented programming plus the ability to run
software on different computers. lt is of special benef it in on-line applications where
smooth commissioning and reliability are the critical factors ; for example. in the
control of a continuous industrial process. Experience in use of RTL/2 has
demonstrated the following benefits in the stages of such a project :

The re-entrancy of RTL/2 code and natural task structure allow design effortto be
concentrated on the actual computertasks and their organisation. Moreover, where
the operating system is also written in RTL/2, its ease of adaptation permits a more
flexible approach to the overall design. This applies particularly to small systems.

A several-fold increase in productivity, depending on the nature of the job and
software tools available. This is due partly to the modularity of RTL/2, which enables
the work to be tackled in a well organised manner, and partly to the range of langua ge
facilities, expressly designed to minimise the need for assembly code in real-time
programmrng.

The integrityfeatures built into Rf L/2 enable the programs to be thoroughly
checked during both compiling and linking :thus programs reaching the
commissioning stage should be free from all but fundamental logical errors.
Moreoever, if the programs have been compiled with run-time error monitoring
provided by the language, there is a good chance that such errors will be trapped and
quickly diagnosed. Experience has shown that the integrity features of RTL/2 are a
valuable asset during the commissioning of on-line computer installations,
especially if the hardware is late or being troublesome.

Maintenance is assisted bythe clearer documentation of programs and continued
use of run-time error detection and recoverv to trap unforeseen error situations.
The modular nature and integrity of RTL/2 software makes it easier and safer to
modify as requirements change, especially if the work has to be undertaken by
someone other than the original programmer.

MOÊE CTCËLL(ANRAY(S) BYTE iIAi.{[I INT COUNT) I

rr0[}Ë RTcELL(INT RNA.f.,'! ËrRC{lUi,j T);

MI]OE LKCELL(INT CIi,REË L(CELL LA5T,RËF PROCHD TilISPROCIBYTE RAl IRAZT
ARRAY(O)INT LOCALS)I

MODE STK(INT STKLNGTH,REF LKçËtL BASEçËLL, INT TOPSTACK,BYTE MS1,MS2,
ARRAY(16) INT GRÊGSIREAL FPROI INT PCCIUNTER, LABEL SVËRL' INT SVERN'
PROC(INT) SVÉRP,F,ROC{)ilYTË SVIN,FROC(BYTE) SVOUTTBYTE SVTËRIdC}II
SVICIFLAGT $VSTSFLG,GOTOTLA6, INT STKSPARE)'

y.ï"y^xxlxy,T, R R p tt ç'xi.r"7"y,y,y.7"r

ËNT PROC RRDfiG (RE F STK X) I
INT ERNOi!!X.SVERN;
REF LKCELL CËLL'

SËT() i
CËLL:=X,BASICÊLL;
TI^JRT (" f'N L#R1L ERRCI R
Ih' RT(ERN{i) i
'fhiRT(" Çtlt LINË ")t
IhRTS(X.SRccs(7),3) i
Ti,{RT("#!'lL# I
l'lAF! HL0C(Ct'tL) |
bIFI I LE çË LL. LAST: fl: X.

CËLL:=CËLL. LAST;
TilRT("#NL#CALLËD
NÂMELOC(CELL);

REPI

riLJt,t BÊR *) i

:i 6R 6 HOLDS LINE NLJi;BER Y,

f{ PPOC ") i

SASÊCELL DO

FRONi PR0C ")i

LAFiD 151+1

IF ËRN0)=100Cû THËl'i
Ti.JRT ("#i{Lf pR0(rRAt''l c0uNTEF = .') ;
X!^lRT(X'PÇUL,iiTËR) i

HtiDr

TtrRT("#NL#RË6ISTERS 0-T ")i
FgR I:rE1 Tû g 0n

sps(z),
X'JRT(X.GFËçS(I)),

REPI

Ti.rRT (" #N L (?,)#RETRtTTÊAC E#li L# ") l
FOR I;I815 BY *1 Tfi O i)O

BTOCK
RËF RTCHLL I?TC;sRTABLE(((I+RPTR SRL 3)
I NT Ri";;:aRTC, Rf',1Al.-1E;

)t

IF Rf'l #0 THËlr
ThIÊT (CTABLE (RII SRL 4) n NAt''E)'
sps(e),
ItJÊT (RTC, RCOtJilT-RN+1),
TT^lRT("f NL# ") i

Ellûr
ENDBL0CKT

RËPI
RRChT(), Example of RTLl?. system prograrnming

ENUPROC I

Use of RTLI 2
The steps in developing an RTLIz program follow the
conventional pattern. The program is typed or input
to a computer on standard equipment and then
translated into code using an RTL/2 compiler. A large
program may be written and compiled as several
independent modules which are then linked together.
The language definition enables a well-written
compilerto thoroughly check that programs conform
exactly to the rules of RTL/2: explicit cross-
references enable further checks to be made during
linking of modules.

In the case of a real-time program the first step in the
design is to clearly identify the various run-time tasks
and their interactions. The following example
illustrates how the RTL/2language structure assists
at this planning stage :

A computer system for industrial control might have
the following specif ication :

âi scan a series of analogue and digital inputs at
regular lntervals.

)Ê check each pointfor alarm conditions, printing or
displayi ng alarm warnl ngs.

âl compute control actions (direct or supervisory)
based on some of the scanned points

âl apply sequences of control actions on certain
sections of the plant, spanning periods of minutes
or hours.

+ç display information on demand and read plant
control data from an operators panel.

This specification implies a set of parallel activities
within the computer, some at regular but differing
time intervals and some irregular. The actlvities
require access to common areas of data describing
the current state of the plant and control settings.
Each activity also requires a private work space in
which to hold temporary data arising during
calculations or indicating its current status. Finally
each activity requires its defining code. or program,
and (for storage economy or other reasons) some
programs may need to be shared as common routines.

These requirements are reflected in the program
structure of RTL/2. All nTL/2 software is built-up of
units called 'bricks', of which there are three basic
types:procedure bricks, stack bricks, and data
b ricks.

A procedure brick is a set 0f RTLl2statements. All
procedures are defined in RTL/2 to be re-entrant,
meaning that the code is never changed during
execution and all temporary data is stored elsewhere.
Thus a procedure may serve several activities, or
tasks, at the same time ; for example, a procedure
defining a sequence of control actions may be applied
to two plant streams simultaneously,or a procedure
required by a high-priority task may be used without
waiting for a lower-priority task to finish with it. This
distinction between a procedure - a passive set of
instructions - and a task - the execution of a
procedure for a particular purpose - is fundamental in
RTL/2.

Thq pa.rallel use of procedures is accomplished by
assigning a stack brick or temporary work area, to
each active task. In this stack, the work-space
needed by procedures used by the task is kept
separate from the workspace for another task using
the same procedures. Access to data in each stack
is looked after automatically and change of task
simply means change to another working stack. The
ability to assign and refer to stacks explicitly (and
hence to their associated tasks) is the other important
ingredient.in RTLI Zwhich makes multi-task
programming possible.

Finally, RTLI2 allows the programmerto create any
number of data bricks or named common data areas.
These may be used to store data of interest to several
tasks or data which outlives the duration of individual
tas ks.

Returning to the industrral control example, it is now
possible to see howto plan the programming in
RTL/2.The frrst step is to identify the tasks :

ài SCAN TASK:Scans points, checks alarm states,
computes and outputs control actions. Runs
reg u I arly a nd frequently.

àF ALARM TASK : Prints out alarm messages on
demand from scan task (this might be part of the
scan task if the time scale for printing matches
that for sca n n ing) .

rç S EOU EN C E TAS KS : One for each section of the
plant which is wholly or partially time-
independent. Takes the plant through a sequence
of operations, monitoring its progress. Called by
operator or from other tasks.

For the purpose of this example it is assumed tha't
two identical sections of the plant require the
same control sequence A and a third section
requires a different sequence B.

rÊ 0 PERATO RS PAN EL TAS K : Responds to
operator demands (via interrupts) and inputs or
o utp uts d ata a s req u ested .

It will be seen that activities have been grouped into
tasks each of which has its own natural time scale.

operating
system

Scan Task Alarm Print
Task

Sequence
Contrcl Task

Operators
Panel Task

Sequence Control Tasks

procedure

data procedure

data procedure data

further procedure and data bricks used by
tasks on a privat€,shared or global basis

Following this step, the programmer can now plan
the procedures and data bricks which he will need
forthese tasks. The total software structure, including
one RTL/2 stack per task, will have a layout
resembling the diagram above.

The procedure, stack and data bricks have now to be
specified in RTL/2, compiled and checked. At this
stage the bricks may be dealt with in groups or
modules convenient for teamwork and general
program management. The compiled modules are

f inally lin ked together to form the complete system
with checks applied for correct matching of
references between mod u les.

In practice some of the software required by the user
will already be available in the form of standard
packages. In the type of application illustrated above
he would generally expect to use a standard
operating system to control and supervise the tasks,
possibly itself programmed in RTL/2.

Summary of RTL l2language features
chfARAcTER SET (rSO7l'
ABCDEFGHIJKLM
NOPORSTUVWXYZ
0123456789
'o/o' O*+r-./:; (:)
f $ (interchangeable)
& ?@
HT (horizontal tab)
LF (line feed)
S P (space)

RTLI2ITËMS
Item is terminated by any character not part of it.

Names

name I !: letter iletterldigit] . . .

Reserved keywords

ABS ENDPROC MODE
AND ENT NEV
AR RAY EXT N OT
BIN FO R OCT
BLOCK FRAC OF
BY G OTO O PTIO N
BYTE HEX OR
CODE IF PROC
DATA INT R EAL
DO LABEL REF
ELSE LAN D REP
ELSEIF LENGTH RETURN
EN D LET RTL
ENDBLOCK LOR SHA
ENDDATA MOD SHL

Numbers
integer real f raction
456 3.47 0.49381
B I N 1 01 0.187 17 .6 B-5
o cT 37 7 6E-4 1 E1 0 8-36
HEXAFz 1E+2 -1 E_1 B+1
'A' 0.0 0.080

actual space and all RTL printable characters except " # f $
allowed between ' '

Strings
,,THIS ISASTRING"
"fN L(Z)#TABLE HEADING" assumes LET N L: 1 0 ;,, * rÊ#9, 9 # M ESSAG E#1 O#,,

(or f or $) enclsse numeric insert
newline not allowed in strings but concatenated strings treated
as one

,,THIS
IS TH E FI RST PART"

,,AN
D TH IS IS TH E R EST"

Comment
O/OTHISISACOMMENT%

Option
oPTloN(1) BC, CM,TR;
oPTroN (2);

option items always available are

BC bound checks on access
BS bound checks on storage
NW no warning messages
N S no scope warning messages

others depend on implementation.

Let
Text rep lacement

LETNL:10;o/oNEWLINE lS lSOT 1Oo/o

LET MAS K: OCT 1 000 ;

LET RAB: R EF AR RAY BYTE;
LET NR:5;%NUMBER OF REACTORS%
LETATMOS:14.7 ;%PRESSURE lN PSI%

DECLARATIONS
scalars : local to procedure or global in databrick
arrays and records : only global in databrick

General syntax is

type item [, item] . . .

where type describes characteristics of identifiers being
declared and item is either an identifier or a group of identifiers
with initialvalue separated by :--

Scalar Declarations
primitive modes : BYTE, I NT, F RAC, R EAL,

LABEL, PROC de*criptor, STACK
also R EF scalar, R EF a rray, R EF record.

Descrip.tor of PROC variable lists parameter modes in brackets
and followed by result mode - same as external description of
PROC bricks.

without initial values thus :

INTI,J,COUNTER;
R EAL H EIG HT; . ,.

LAB EL R ESTART;

with initial values thus :

INT K t:-31 0, R i: O CT 37 ;
BYTE TERM INATOR ::' *', FLAG :-1)
REAL PRESSU RE::0.0 j
PROC(REAL) REAL FN :-SlN;%SlN lS PROC BRICKo/o
REFINTII:-K;
R EF AR RAY BYTE M M :-,, M ESSAG E,, ;

initial values for local declarations may be any valid expression;
in data brick must be:

BYTE/l NT/FRAC/ R EAL : suitable number
PROC/STACK : brick name
LABEL : not possible
R EF scalar : variable name
R EF array i array name/string
R EF record ; record name

allvariables except plain and LABEL must be initialised in
application language.

Array Declarations
Can have arrays of scalars and arrays of records but not arrays of
arrays ; multidimensional arrays are actually arrays of R EF arrays.
Lower bounds always 1. Upper bound (:length) may be zero.

AR RAY(3)lNT Al, AJ ;
AR RAY(7) R EF AR RAY REAL R PTRS ;
AR RAY (5, 1 0) BYTE TAB LE;

lnitial values are denoted by list of element values in brackets -
repetition factors (also in brackets) may be applied. ln case of
arrav of bytes may be denoted by string. Structure nested in
mu ltidi mensional case.

AR RAY (12) I NT DAYS I N M O NTH l: (31 , 28,31, 30, 31 ,

30,31 (2), 30, 31,
3Q 31);

ARRAY (2,2) REAL UNITMAT:- ((1.0,0.0), (0.0, t.0));
ARRAY(1 6) BYTE HEXDIG ;- "Q123456789A8CDEt" ;
ARRAY(5) REFARRAY BYTE STEPS:: ("SLOW" (2),

"o u lcK" (2) ,,,SLOW,,);

SLA
SLL
SRA
SRL
STAC K

SVC
SWITC H

TH EN
TITLE
TO
VAL
WH ILE

Record Declarations
Components of record may be scalars or arrays but not records
or arrays of records. Component may be REF record. Shape of
record described by M O D E definition at brick level.

MODE name (type namelist [,type namelist]. ..);
MODE COM PLEX (HEAL RL, I M);
MODE LtST (tNT HD, REF LISTTL) ;

Actual records and arrays of records declared as for scalars.
Initial values denoted by list of component values in brackets -
but no repetition factors.

COM PLEX | :- (0.Q 1 .0) ;
ARRAY (100) LIST MAIN :- ((0, DUMMY) (100));
LIST DU M MY:- (0, DU M MY) ;

BRICKS
ENT before brick makes accessible from outside.
EXT (or SVC, but no SVC stack !) before description of brick
indicates is outside"

Data Declarations

[ENT] DATA name I databody ; EN D DATA;
Databody is collection of declarations

ENTDATAMISC;
INTCOUNTER;
REALTEMP, PRESS;
AR RAY(5) BYTE MAR K:- "?ALXV" ;

EN D DATA;
External description omits initial values.

Stack Declarations

IENT] STAC K name lensth;
ENT STAC K MYSTAC K 5OO;

External description omits length.
EXT STACK MYSTACK;

Proc Declarations
ENT PROC name (paradescription) [resultmode],'

blockbody; ENDPROC;
Blockbody describes action : paradescription describes and
names parameters - brackets always present even if no
parameters; result mode describes result if procedure is to be a
function.

PROC SUM (REFARRAY REALA) REAL;
R EAL T :- O.O;
FOR I :- 1 TO LENGTH A DO T::T*A (I) REP;
RETURN (r) ;

EN D PROC ;
ENT PROC STOP 0;
L: GOTO L;
EN D PROC ;
PROC MP (INT I,J, REAL R, LABEL L) BYTE;

:
EN D PROC ;

External description has name last and no names in parameter
list.

EXT PROC (REF ARRAY REAL) REAL SUM ;
EXT PROC 0STOP;
EXT PROC (INT, INT, REAL, LABEL) BYTE MP;

Stack and proc descriptions may describe several bricks.

EXT PROC (REAL) REAL SIN, COS, TAN, SORT;

EXPRESSIONS
Basic constituents are constants (numbers or literal names),
variables. function calls and conditional expressions. Dyadic
and monadic operators may be applied with brackets overriding
normal precedences.

Va ria bles
Array elements denoted by appending subscript expressions in
brackets to array or ref array.

Record components denoted by appending dot (.) and
component name to record or ref record.

DAYSTNMONTH (7)
UN|TMAT(t,J+1)
STEPS (l,J) or STEPS (l)(J)
D U M MY.TL
MArN (3).T1. H D

Function Galls
Procedure name followed by actual parameter list in brackets.
Brackets present even if no parameter. Parameters are any
expression of a ppropriate mode.

Zi- Loc (X+Y) ;
T:-TIME 0;
AJ (3) :: F (J, K, L-3) ;

Conditional Expressions
lF condition TH EN expression

IELSEIF condition TH EN expression] . . .

ELS E expression EN D

Condition built out of comparisons with AN D and O R ; AN D is
more tightly binding and comparisons evaluated from left to
right untilcondition determined. Brackets cannot be used to
override the precedence of AN D/O R.

Comparison operators:

on7 primitive modes
on lNT, F RAC, R EAL
on 9 REF modes

l::lFX:0THEN 3 ELSE l+J END;
B:- IF X:YAND P < OTH EN ,A, ELSE O END;
FLAG I:IF MAIN (I).TL:: :DTHEN O ELSE 1 END;
RWRT (rF p-1 THEN 0.0 ELSETF p> 1 THEN 3.7 ELSE

2.4 EN D) ;
TWRT (IF L:OTHEN ,,THIS,, ELSE,,THAT,, END);

Double Length

1l
11

,+t.
.'if .

srg n

big integer fJ n
normal integer n
f ine integer n
big fraction n
normalfraction n
f ine f raction f]

poi nt

l'-l .
[-l . [-l
t-l . [-l

.l-l

.f-l

b.sl ,r i\,eFRAC,çtfi,"etNt/ bisF*ob.rÀnc

N B fine integer same form as big fraction.

Automatic Conversion

R EAL

+
BYTE

big -+normal maY cause overflow

fi ne ----> norma I ro u nded

Conversion is automatic where no loss of information can
arise; in other cases it must be forced by BYTE, lNT, FRAC
o perato rs

Monadic Operators
opera nd

+, ABS BYTE, INT, FRAC, REAL

- F RAC, INT, R EAL
NOT INT
INT big FRAC

rN'T, REAL
FRAC finelNT

FRAC, REAL
BYTE BYTE, INT, R EAL
REAL BYTE, INT, FRAC, REAL
LENGTH array

REAL*lNTand REAL--+ FRAC are rounded
Dyadic Operators

STATEMENTS
Statements may be labelled by prefixing by identifier and colon.
May be several labels.

L:A:-Bi
M1 : M2: RETURN;

Block
B LOC K blockbody EN D BLOC K
where blockbody : ;- [simpledec,'] . . . sequence

BLOCK INT S:-0i
FOR l:-1 TO N DO S l:S+Q (l) nEP;
rwRr (s) ;

ENDBLOCK;

Assignment Statement
destination'- fdestinatioh r:] . . . expression
Each destination consists of a variable possibly preceded by
VAL

l:-J :-0;
A (l) i:J +1 ;
MAIN(2),TLl:DUMMY;
VAL ll :- ll+ 1 ,'

M M I: IF FLAG #O TH EN " "ELS E " HALT" EN D ;

Goto Statement
GOTO label-expression

GOTO FINISH;

Switch Statement
SWITCH expression OF labellist
Labellist must consist of local literal labels. lf expression out of
range then no iump occurs.

swlrcH K oF P1 ,P2,P3,P4,P5;
TWRT ("KOUT OF RANGE");

Conditional Statement
lF condition TH EN sequence

IELSEIF condition TH EN sequence] . . .

[ELSE sequence] EN D

I F X:OTHEN P I:O; GOTO STOP END ;

IFY> 1 THEN P]:O ELSE O:_P END;

IFX<YTHEN
XX::YY;J :_ K;

ELSEIFX>YTHEN
XX:-ZZ;J:-Li

EN D;

For, To Statement
FO R identifier :- êXpression IBY expression] TO expression

DO blockbody R EP

Increment, limit and initial value evaluated once only in that
order as of mode integer.-control variable is read only; if BY

omitted then increment assumed 1 .

FOR l:=1 TO 10 DOA (l) i:0 REP;

FOR J :--K BY 2TO L DO
CALL (J);A (J) :-1 ;

REP;

lf control variable not used then use form

TO expression DO blockbodY REP

this repeats body'expression' times.

T0 100 D0 Our ('*') REP;

resu lt
as operand
as operand
INT
finelNT
INT
big F RAC
F RAC
BYTE
R EAL
INT

precedence
SLL, SRL, SHL 6
SLA, SRA, SHA 6*5

opera n ds
INT INT
see below INT

resu lt
INT
see bef ow
bis I NT
big F RAC
big F RAC
fineFRAC
R EAL
INT
INT
INT
F RAC
F RAC
FRAC
R EAL
INT
F RAC
FRAC
BYTE
INT
BYTE
INT
BYTE
INT
INT
F RAC
R EAL

SRA
big
fine
fine

//

/
MOD

LAN D

LOR

NEV

INT
INT

, iNi

FRAC INT
F RAC F RAC
R EAL R EAL

5 big INT INT
finelNT FRAC
bigFRAC FRAC

5 finelNT INT
big FRAC INT
fineFRAC FRAC

5 REAL REAL5 ii'J'il !H.
bisFRAC FRAC

4 BYTE BYTE
INT INÏ

3 BYTE BYTE
INT INT

2 BYTE BYTE

INT
F RAC

INT
INT

F RAC F RAC
R EAL R EAL

Arithmetic Shifts - Result Types
First operand SLA
big big
normal big
fine fine

SHA
big
normal
fine

While Statement
WHILE condition DO sequence REP

WH ILE IN PUT (3) #1 DO
DELAY (1 500) ;
TWRT ("#N L#SW|TCH ON PU MP") i

R EP;

Procedure Statement
Similar to function calls in expressions;

TWRT ("F|NALVALUE OF X_") ,
twRTF (X,3) ;
TWRT ("#N L#JOB Ft'N tSH ES") ;

Functions may be used for side effects
lN 0 ;o/oDISCARD NEXT CHARACTER%

Return Statement
R ETU RN I R ETU RN (expression)

The second form is for f u nctions

RETURN (tFX:0THEN 38.7 ELSEY END);

Code Statement
CODE digitlist, digitlist; codeitem . . .

nTL/2 items accessed by prefixing by'trip 1'; component
names and databrick variables followed by'trip 2' and
name of host mode or brick;'trip 1'and'trip 2'depend on
implementation. Statement terminates with 'trip 1 ' RTL.

coDE 6,0;
MOV *COUNTER/MtSC, *il (5)

* RTL;

MODULES
This is the unit of compilation and consists of one or more
bricks plus TlTLEs. O PTIO Ns, LET definitions. M O D E

defi nitions a nd external descriptions.
The following example illustrates a complete module.

oPTroN (1) BC;
TITLE
I LLUSTRATION OF M ODU LE,.

LETNL-10,
EXT PROC (R EF AR RAY BYTE) TWRT;
SVC DATA RRERR;

LABEL ERL;
INT ERN;
PROC (rNT) ERP ;

EN D DATA ;

MODE PAtR (tNT OLD, NEW) ;

ENT PROC SEARCH (REFARRAY PAIR P. INTX) INT;
%SEARCHESARRAY P FOR OLD ENTRYXAND%
%RETURNS CORRESPONDING NEW ENTRY%
%OUTPUTS MESSAGEAND GOES TO ERL IF FAILS%
FOR l:-1 TO LENGTH P DO

REF PAIR RP :: P(l) ;
IF RP.OLD:XTHEN RETURN (RP.NEW) END;

REP;
TWRT ("#N L#SEARCH FAILS") ;
GOTO ERL;

ENDPROC;

STANDARDS
The following procedures and data bricks should be available to
the user in any RTL/2 system. They are shown here as they
would appear as external descriptions.

Error Recovery
SVCDATARRERR;

LABEL ERL; o/ounrec errorlabel%
INT ERN; % unrec error number %
PROC (lNT) ERP; %recerrorprocedureYo

EN D DATA;

EXT PROC (lNT) RRGEL;o/oset ERN;monitor; GOTO ERL%

Stream l/O
SVC DATA R RSIO ;

PROC 0 BYTE lN ; % read next character o/o

PROC (BYTE) OUT; % output character%o
EN D DATA;
SVC DATA R RSED ;

BYTETERMCH, %termination charon input%
IOFLAG ; % error flag for input %

ENDDATA;

EXT PROC 0 FRAC FREAD; Yoreadfraction %
EXT PROC 0 TNT TR EAD ; To read integer %
EXT PROC ()REAL RREAD ; o/o read realo/o

EXT PROC (REF ARRAY BYTE, REF ARRAY BYTE) INT
TREAD;

o/o teâd chars into f irst array; terminators in seco ndo/o
EXT PROC (lNT) N LS/ SPS ; % output newlines, spaces %

EXT PROC (FRAC) FWRT; oôwritefraction unformatted %
EXT PROC (lNT) IWRT ; o/o write integer unformatted %
EXT PROC (REAL) RWRT ; %write real unformattedo/o

EXT PROC (FRAq INT) FWRTF ; %fraction formattedo/o
EXT PROC (tNT, INT) IWRT; % integer formatted %
EXT PROC (R EAI- lNT, INT) RWRTF; %o real formatted %

EXT PROC (REFARRAY BYTE) TWRT i o/owritetext%

Formats:

FnEAD 0
rREAD 0
RREAD 0

FWRr (X)
rwRT (x)
RWRT (X)

FWRTF (X, N) (-l space) digit.N-digits
IWRTF (X, M) spaces (-l space) digits
RWRTF (X, M,0) as IWRTF
RWRTF (X, 0, N) (-l space) digit. N-digits

E (+l-) 2-digits
RWRTF (4 M, N) as IWRTF then .N-digits

Error Numbers
u nrecoverable
1 stack overflow
2 illegal GOTO
3 inaccessible ERL
4 array bound failure
5 fixed overflow
6 floating overflow
7 REAL*I NT/FRAC overflow

field
N+3
M+1
M+1

N+7
M+ N+2

recoverable
101 FREAD
102 I R EAD
103 RREAD
1 04 TR EAD

ilayoutl [+ l-1 digit. digitlist termch
Iayout] [+ l-1 digitlist termch
[layout] [+ t-1 digitlist [.disitlist]
[E [+ I-] digitlistl termch
t-l disit.f-digits
t-l digits
t-l digit.r-disits E t-l disits

PROC ASK(REF ARRAY BYTE A)II'I T,
r OUTPIJT l.,IESSA6E A ANÛ R ETURN
T NT N:

A6A T N:
I0FLA63*01
Tf.lFT (A) I 0UT (Ei'iC) t
N:FIREAD();
TF IOFLAG#O TI{ËN GOTO AGAIN E1"I O,
RETURN(l.t) I

ENDPROCI

ENT PROC RECIPETASK()'
INT TEMPVALT I,ITFFII
ERLIëGIVEUP'

lASKQTART i
tfAIT(CTLBEv) 8

EDIlREC:
I :*ASK("#NL#REC l pF NUtrËËR") i
IF I(1 0R I>RECIpEMAx THËN 60To
CURRECT=RECIpË(I) i
I TEl.{ i =ASK ("#N L# I TEM") ;
TEIIIPVALI =ASK (" NHtl VALI.IE") ;
TF ITHM;1 THEN

CURRE C, AN R : sTËl-{PVA L t
EL$E

CURRE C . CA PttR I =T Ë f.lPVA L ;
ENDI
60T0 EDITRECT

Ê0IïDATAI

ThIRT ("#NL#çOf'4MON SATA I S : #IJ L#")
FOR T::1 TO DATAI',I AX T,Q

IICRT (I NT (COI4REC (I) *SCA LE (I)))
REPI
IhJRT(T#NL#0CI YÛU I^IANT TO çII AN6E
IF IITil#!Y' THEN

TLI RT(" BYE*),
GOTO TASKSTARTI

ENDI

INTFGER REPLY A$ RESULT T

Y, UNREçOVERABLE ERROR LABEL

ËDITDATA TNIII
r cURREç PQIr\lTS

i "A COI.IVË,RT

IT#EN(J#'}I

TO CONVERSATION UNIT$I

TO RECIPE I T

N URITE OUT çOMI'lCIN DATA X

r

ï, FINISifEp

Tt'|RT('#NL# LdARNINGt ANy CHANGE AFFECTS CURRINT BATCII #NL#N)'

ilEXTITEM:
I T=ASK('#NL#ITEM hIUMBAR") i
TF I(1 OR I>DATAM/{X THEN GOTO
TEI{PVALi=ASK(" I'I EhI VALUE'),
çOilRHC (I) I =THf{pVAL/sCALË (I) i
6OT0 NEXTITET'tl

GIVEUPI
STOPTASK(THTSTASK) i
60TO TASKSTART;

EHOFROC;

RTL|2TO|2EDl t12l47s

EDITDATA ENDI

Y" CCINVERT TO ENGINËERIN6 UNTTS T

ËRR0n ACTI0N Y"

Example of RTLI2 application programming

I

---'-'-:--F-

-ts

OFFICES E SUBSIDIARY COM PANIES:

Systems Programmlng GmbH,
6 Frankfurt am Main 18.
Cronstettenstrasse 66,
West Germany,
tel Frankfurt 557665
telex:41 1505

SPL (ltalia) SpA.
via C, Menottr 1 1 ,

201 29 Milan,
Italy.
tel :73 86 660

Systems Programming Ltd.,
Svenska A.8.,
Grev Turegatan 35 4tr.,
11 4-38 Stockholm,
Sweden
tel . 23 20 93

OY Systems Programming Ltd.,
Lonnrotinkatu 38 AB , ,

Helsinki 18,
Finland.
tel : 64 37 63

ASSOCIATED COM PANIES :

Steria.
3 rue du Marechal de Lattre de Tassigny,
78- Le Chesnay,
France.

Steriabel,
Rue de Namur.
59/1000 Bruxelles,
Belgiu m.

Applied Research of Cambridge,
5 Jesus Lane.
Cambridge,
C85 3BA.
tel 0223 6501 5

Systems Programming PtY, Ltd.,
P,O. Box 41 1 ô5.
Craighall,
Johannesburg,
South Africa.

HEAD OFFICE

12-14 Windmill Street,
LondonWlPlHF
tel :01 -636 7833
telex : 217 84

MIDLANDS REGION

25 St. James's Street,
Nottingham, NG1 6FH
tel :060245011

