
29. Records: usêr-defined structures

The personnel record system developed in section 27 worked reasonably efficiently because we
were able to pack all the required information about an individual into one integer location; one
integer index sufficed to identify the individual, and a single array was all thatwas required to
store the complete system. In practical situations of this kind, it is usually not possible to pack all
the information into an integer, nor indeed into a number of integers; the method of passing an
index and then accessing numerous arrays becomes inefficient in terms of program space and
execution time, and there is considerable lack of clarity in the continual packing and unpacking
of the relevant fields containing the data. This section describes the facilities in RTL/2 which
enable the user to define his own structures and to manipulate them either as entities or by
reference to their constituent parts. Clearly there are two aspects to this: the definition and the
use; we shall treat these aspects in turn.

The only structure we have at present in RTL/2 is the array. This is characterised by the fact that
each element is of the same mode. A user-defirted structure will consist of a number of
components of varying modes which are tied together under one name. The definition of a user-
defined structure effectively defines this name as a mode like integer or byte. This is reflected
in the use of the keyword MODE to introduce such a definition. Our earlier personnel system
might have been set up using the following structure:

MODE PERSON(INT AGE, SALARY, BYTE SEX, LOCATION};

Such a definition occurs outside our bricks at the same level as LET definitions; the semi-colon
separates it from other definitions and bricks.

We have created no structures by this definition; we have merely associated the name PERSON
with a layout consisting of two integers and two bytes, that is we have a template. Every time we
use the name PERSON we shall mean a'lump'consisting of two integers and two bytes. Our
definition goes further than this; it also defines four other names which can be used to select
the component parts. Each field in the structure thus has a separate name. The syntax can be
deduced from the example: the keyword MODE is followed by the name being defined and
a list of components enclosed in brackets. The list of components is similar to the declaration of
parameters - mode descriptions followed by a list of names all separated by commas - but
remember that wè have not actually declared anything yet. We shall return to the permissible
forms of the components later.

Having defined the shape of our structure, and associated a name with it, we can now investigate
how to declare specific examples of it. Actual occurrences (in the sense of creating space in the
computer) are called records. Records, like arrays, are static structures and hence may only be
declared in data bricks. The form of the declaration is quite standard: the mode followed by a
list of names being declared. However, instead of the mode being a keyword, like lNT, it is the
name defined in the MODE definition. We can also declare arrays (multi-dimensional if we wishl
of records and ref-record variables which naturally can contain the names of actual records of the
appropriate mode. Remembering that reference variables must be initialised, we can write:

DATA RECORDEXAMPLES,
PERSON ME ' YOUI
ARRAY (5) PERSON PEOP LE I
REF PERS0N l.JH0t=METB0SSTsPE0PLE(1) l

ENDOATA'

which will create the following storage layout:

s€ME
"g

YOU PEOPLE

,
5,f 4t

UJ

ô-
o
IJJè

Each actual record consists of four separate fields.
149

We must now investigate how we name the individual variables involved.

Each cornponent of each record behaves as a variable of the mode specified in the MODE
definition and once we have learned how to name such a variable we can, of course, use it in
precisely tha same way as any other variable, using all the constructions we have learned so far
in this manual. The scope of the names of a MODE and its components is global; the names
behave similarly to those of a data brick and its variables as far as availability in blocks and
re-definition are concerned. though their uses are quite different.

In naming a particular element of an array, we append a subscript to the name of the array. In
the case of records we append the name of the field to the name of the actual record; in this
way, the names of components in the MODE definition are used asselectors for the various fields.
Syntactically, we write the name of the record, a point (.), and then the selector name.

t'lE.SEXirrMr,

YOU.A6E3-YOU,AGE + 1I X âTRTHDAY i(

As described above, once you have selected a component it behaves precisely as a variable of thc
mode specified in the MODE definition, just as an element of an integer array behaves as an
integer.

The syntax is of the form 'record name.selector nan,+', anrj 'ence when we want to select a field
from an array of records we write:

PEOPLE(3).SALARY := PEOPLE(3).SALARY + 315E'

The name of the record is given by an array element (formed in the usual way); a fieid is ther
selected as above.

Again. as in the array case, selecting a field using a ref-record variable will result in automatic
dereferencing of the ref-record variable to yield the name of an actual record from which a field
can be selected:

WHO.LOCATION := 3; %WHO DEREFERENCED%

This dereferencing is important. Records are static structures, and hence the only forms which we
can declare locally (particularly in declaring parameterslare ref-record variables (assignment to
these is straightforward and similar to assignment to a ref-array variable). In this way, we can pass

a reference to the whole structure as a parameter; within the procedure, there is no need to access
many arrays using an index passed as parameter; all we have to do is select the appropriate
component using the ref-record variable.

PROC UPDAlE (RCT PERSON I.JHCI)I
I

a

:ro.sALARY!=
I

ENDPROC'

,{ A CALL OF THIS IiILL APPEAR AS 7,

UPDATE(PEOPLF(2))I

No'whole record'operations are allowed (just as in the array case); hence there is no ambiguity
in an assignment of the form WHO := PEOPLE(2) and no possibility of using VAL. We have
pointed out many similarities between records and arrays and the key to both is understanding
the formation of a name of a variable. Records have an advantage over arrays in that the required
component field can be calculated at compile-time (like a constant subscript) and that there is
nwer (even in the ref-record case) any need to perform run-time checking and hence no overhead;
all fields are defined by the MODE definition and all checking is carried out at compile-time. The
record form may also be more legible.

150

Having seen the definition of a structure using a MODE definition and how to declare actual
records and manipulate both them and their components, we must now consider what modes are
permissible for the components. The only things that are not allowed as components are records
and arrays of records; any other modes or ref-modes (including ref-records) or arrays of them are
allowed.

MODE ARITTI (BYTE BI INT I' FRAC FI REAL R),

'.1ODE
STRUCT (ARRAY (6) BYTF NAI,IE, REF INT RT1,RIE,

ARRAY (4) REF FRAC RF, REF SlRUCT RSI
REF ARRAY ARIlH RAA)I

X NQTE THAT STRUCT CONlATNS A REFERENCE TO A STRUCTURE
Y, OF ITS OI.IN KIND. SUCH RÊCURSION AND MUTUAL RECUR9ION
Z ARE QUITE PÊRMISSIBLE A$ LONç AS ONLY REFERENCES ARE
r tNv0LvE0 ï
r THE FOLLOI,IING IS I LLE6AL Z

MOOÊ I,IRONG (I}IT ALPHAIEFTAI ARIlH IJA, I'IRONG NOTRIGHT)I

Components whose modes are references to structures can be used to set up a list structure in
which records are chained together:

MODE CHAIN (...other components... REF CHAIN BACK, FORE); enables CHAIN structures to
be linked (but not automatically) in the form:

lf we have an actual CHAIN named O, O.BACK is the name of a reference to a CHAIN variable;
we can therefore select a field from the record name which it contains by the usual method:
O.BACK.FOR E; the appending of the selector will force Q.BACK to be dereferenced and the
FORE field of that record is now named; this is another ref-CHAIN variable and if we assume
that the linked list pictured in our diagram has been set up, it will, of course, contain the name
O. In the case of arrays and references to arrays (particularly the multi-dimensional case) we
added subscripts to get down to the correct level or ultimate variables; similarly, for records we
select fields until the required variable is obtained.

The similarity with arrays is continued when we consider the initialisation of records upon
declaration in a data brick. (Note here that if a MODE definition includes components which are
references, all actual records of this mode must be initialised to ensure that such components are

safely anitialised). The initial value for a record consists of a list of 'constants' separated by
commas and enclosed in brackets. Whereas in the case of arrays all the 'constants'were of the
same mode, the 'constants' in a record must be of appropriate modes to match the selectors
specified in the MODE definition. Repetition factors are not permitted within a record
initialisation, in the sense of repeating a value for a number of components; the initialisation of an

array component may contain repetition factors in the normal way; and, of course, a record may
have a repetition factor attached to it in the initialisation of an array of records - each bracketed
record initialisation behaves as a constant at the lowest level of the array.

/
z
r

151

MODT AM (BYTE AB, ARRAY (4) FYTË ANAME, REF A AA)I
MODÊ BM (INT BII REF ARRAY BYlE BB, REF INT BRI)I
OATA INITIALISEORçCORDSI

AM ACTUALA;a (tAf r'F0UR',AÇTUALA) r Z REFERS T0 ITSELF I
A?teA3t:(f 9" (0 r1rZr3) rACTUALA),

8M ACB t r(2937 t A2. ANAI4E r ACB. Bl) I
ARRAY (5) AM ARAM !r (

(0,.#0(4)#'1A21 t
(f 0r,'NULL"A3) (3) r I REpÉTITI0N FACl0R FoR RËC0RD r
(tA" (1 tZtS(7)) rARAM(1))

)I T OUTER BRACKET OF ARRAY U

ARRAY (A) BM ARBMI*(
(?7 t ARAM (3) . ANAME ' ACB. B I) r
(0 r'NUIL', ARBM (1) , B I)) I

çNDOATA'

We now give a simple example in which records are chained together. Basically we are adding
words (contained in a byte array and padded to the right with spaces to make them all the same
length) sequentially to a pool and chaining them together in alphabetical order. Advantage is

taken of the alpha-characters being in ascending order in the |SOT character set and the fact that
' ' <'A'. Having forward and backward pointers allows us to remove words from the ordered
list, but not from the pool. The firstversion uses crude coding to show constructions of names
of the form LIST(l).NAME(J); the second economises by using inner blocks and intermediate
reference variables.

LET SFrr t'
LÉÏ NOCHART,I I, I MAXIMUM NUMBER OF LETTERS IN I.JORD 7.

LET MAXN0s10000, 11 l,lAxtl''lUM NUMBER 0F tl0R0S U

LÊT MAXNO?E999ET

MOOE ENTRY (ARRAY (NOCiIAR) BYTÉ i.IOROI REF ËNTRY BACKI FORE) I
7, BACK RETÊRENCES PRÊVIOUSI FORÊ THE NÊXT ENTRY IN ORDER U

DAÏA LÉXICONI
ARRAY (MAXNO) ENTRY LISIiT(

("#SP(N0CHAR)#',LlST(1)rLISl(2))' Z FIRST ËNTRY . DUMMY U
('H'Z I (N0CHAR)#"r LIST(1), LIST(2)) r T, LAST ENTRY ' 0UMMY U
('f0(N0cHAR)#"Lt5T(1)TLIST(1)) r PA0 I (r.rAXN0e))r

INT NOIN3C2l 7, NUMBER CURRÉNTLY IN POOL T

ENDOATA'

PROC INSËRT (RÉF ARRAY BYTE X) RËF ENTRYI
,A RËTURNS POSITION IN POOL OF I.'ORD IN XI ASSUMED TO BE OF 7
'I LENGTII NOCHAR AND RIGHT PADDED t,lTTH SPACES. IF IT IS NOT TN I,
X THE POOL IT T$ INSÊRTÊO AND THE NECESSARY ADJUSTMENTs Z
X MADE TO THE ALPHABçTI CAL ORDER T
REF ENTRY NEXTi;LtST(2)r 7, EN0 0F CHAIN Z

o;rLIsl(1)r
T0 N0I N 00 Z f.,lÊ KNOI.J NUMBER I t'l THE LI ST Z

0te0,F0RËr
FOR JIç1 TO NOCHAR DO

lF 0.tdOR0(J) (x(J) lHEl,i G0T0 N0G0r ENDr
tF Q.|,|0RD(J) t X(J) ltfEN

I F JINOCHAR TI,IEN

ï ALRçADY IN POOL T
RËTURN(a)r

END,

152

GOlO NEXlCHARI
ENO,
f C0RRECT P0StTI0N F0UND - NEXT t,lLL N0t.J C0NTAIN I
Z A REFERENCE TO lHE I.JORD ALPHABElI CALLY AFlER X X
NEXT:EO'
GOTO HOLE'

NEXÏCHARI
REPI

NOGO i
REP,

I N0TE HERE THAT NËXT C0NTAINS LIST(2) . t,E ARÉ ADDING X Z
T lO TIIÉ EIOD OF 1HÉ CHAIN OF ACTUAL |,lOROS T
IIOLE:

NOIN!'NOIN+1I
IF NOIN>14AXNO THEN

Z NO ROOM LEFÎ IN POOL Z
T OUTPUT SUITAB!E MESSAGE AND lAKE ACTION Z
RETURN(LT5T(1))I 1 SAFE RESULT Z

END,
F0R I;r1 T0 N0CHAR 00

L IST (N0I N) rtl0RO (I) l:X (I),
'A FILL IN t{ORD X

REP,
N N0f'l UPDATE C HA I N f
LT ST(NOIN), FORE IINEXTI
L I S T (N O I N) . B A C K I r N E X T . B A C K I
NEXToBACK. FOP[::LTST(NOIN) I
NÊXT r EACX I sLi s T (r,l0 I N),
RETURN(1I81(IIOIN))I

ENOPROC,

PROC ALPHAPR I NT () ,
1(PRINTS OIIl THE LISl IN ALPHABETICAL ORDER USTN6 THE CHAIN T
Z AND ASSUM I N6 AN OUTPUT PROCEOURE PROC TI.IRl (REF ARRAY BYTE X) X

REF ENTRY f,ieXT:3LISÏ(1).F0RE,
L: IF NEXT:!!LISl(2) THEN RÉTURNT END,

7, i,,lE 0NLY l',rISlJ 10 PRINT lHE ACTUAL tJ0RD ENTRIES N0T THE I
I DUMI.{Y FIFST AND LAST ENlRIES X
TI.IRT(NEXT.I.JORD) r
NEXTIENEXT.F0RIl
G010 L I

ENDPROC,

U REV I SED VERS I ON Z
LET SPrr

"LET NOCI{ARI15
'

T MAXII'IUÈ'I NUMBER OF LETTERS IN I.JORO T
LET MAXN0e10000l z l,tAX IMUM NUMBER 0F H0RDS U

i{OO€ ENTRY (ARRAY (NOCHAR) tsYTÊ hlORD, REF ENTRY BACKI FORE) T.I BAçK REFERENCÊS PREVIOUS, FORE lHE NEXT ENlRY TN ORDER U

DATA LEXICONI
ARRAY (MAXN0) ENTRY LISTBs((r#0(N0CHAR)#i,HEA0,TAtL) (MAXN0)),

Z MUST BE INITTALTSÊD AS CONTAINS REFERENCE U

ENTRY HEAD;3(.fSP(NOCHAR)f,,HEADITATL) I
TAI L it(' frf Z | (N0CHAR)#', HEAD' TAI L) I

153

r DUMMY ENTRIÉS FOR BE6INNIN6 AiID EilDING THE ORD€RED LIST I(
?(t.lE COULO HAVE I'1ADÉ THESE THç T IRST TI.'O ELËMÊN1S OT X
Z LIST AGAIN, BUl IN TIIIS t,JAY LISl IS THE POOL 7
INI N0lNlr0r Z NUMBER çURRENTLY lN P00L r

ENDDATA,

FROC IN5ÊRT (REF ARRAY BYTT X) REF ENTRYI
ii RETURNS POSIlION TN POOL OF UORD TN XI ASSUM€D TO BT OF Z
Y LENGTH NOCHAR ANO RIGHT PADDED IdITH SPACES. IF IT TS NOT IN T
I THË POOL IT IS INSERTEO ANO THE NECESSARY AOJUSTMENlS T
U MAOË TO THE ALPHABÊltCAL OROÊR U

REF ENTRY NEXTIIlAI LI X END OF CHATN U

BLOCK
REF ENTRY OiEHEAO.FORET
l,Jrt I LE a: fl:1A I L 00
BLOCK

REF ARRAY BYTE CURtI0RD!!Q.tf0RDt
FOR J:e1 1O NOCHAR DO
BYTÊ CURI,{irCURi,,l0R0(J) r CURXgTX(J)l

IF CURIil < Cl.,RX lHEN 60T0 N0Gor EN0r
I F CURf'l ! CURX THEN

I F JrN0CtlAR TIIEN
X ALREAOY IN POOL Z
RETURN (O) I

END,
G0T0 NEXTCHART

END,
'/, C0RRECT P0SITI0N F0UND - NEXT t/tLL N0l{ CONTAIN E

'A A REFERENCE TO lHE IIORD ALPHABElTCALLY AFTER X T
NEXTis0t
60T0 H0LEt

NEXÏCHART
REPI

ENDBLOCKI
N0601

et!0.F0REl
REPI

TNDËLOCKI
Z N0Tt HERË THAT NExT C0NTAINS TAIL ' WE ARE ADDING X X

u T0 THE END 0F THE CHAI N 0F ACTUAL r,J0RDS I
HOLE !

N0IN3rN0lN+11
I F NO I II>MAX NO T}I E N

X NO ROOM LEFT IN POOL Z
,A OUTPUl SUIlABLÊ MESSAGE AND lAKE ACTION X

RETURN(TAI L) Y SAFE RESULT X
ÉNDI
BLOCK
REF ENTRY NEI.J:cLlSl(N0IN) t

BLOC|(
REF ARRAY BYTE QIINEhI,t.lOROT

F0R l:11 T0 N0CHAR 00
r FILL TN I.,ORD 7,

0(I)i;xil),
REP,

ENDBLOCKI
7. NOt.J UPDATE CHAI N T

154

NEtrl.F0REtrNEXTI
NEH.BACKsINEXl,BACKI
N ËX T. BA C K. FOR E I 'N EI.J,
NEXT.BACKtTNËi.ll
RElURN (NEI.J) I

ENDBLOCKI
ENOPROCI

PROç ALPHAPRINT ()I
U PRINTS OUT THE LTST IN ALPHABETICAL ORDEF USING THE CHAIN I
X ANO ASSUMtN6 AN OUTPUT PROCEOURE PROC T|.jRT(REF ARRAY BYTE X) T
REF ENTRY NËXTtEllEAD.F0REr

X l{Ë 0NLY t"'lSH T0 PRIt{T THE.ACTUAL tJ0R0 ENTRIES N0T THE f
Z DUMMY FTRST AND LAST ENTRIES T
I'lH I LE NEXT: #; TA I L 00

Tt.JRÏ(NEXT.t'l0RD:) r
I',iEXT i t!NËXT. FORE I

RËP'
ENDPROC,

PROC REMOVE (ÊET ARRAY BYTE X) I
:4 I LLUSTRATES USË OF OOUBLÉ CITAI N TO REMOVË AN ITEM Z
I ll 00tS NOT RËMOVE X FRCIM THE p00L - INDEED IF x lS N01 Z
Z IN THË POOL IT ADDS T1 1O IT BY TIIE CALL OF INSERT T
iÉ WE COULD TRAP lHIS CASE BY REiIEMBËRING NOIN BEFORE CALLIN6 7.

U IIiSFRT AND COMPARING I.,IITH THË VALUE OF NOIN AFTER lIIE CALL T
REF ËNTRY Q3*INSERT(X)t
0.BACKTF0RE:c0.F0REl
O, FORE. ISACK : IQ. tsACKI

ENDPROC,

Section 29 examples

1. Rewrite the earlier DDC example (section 10) using records.

2. Design suitable MODE definitions for the creation of family trees. Attempt to write
procedure bricks to ascertain the family relationship between two people. The importance
of this exercise is not the complexity you can achieve, but the design and manipulation of
suitable structures.

155

30. Communication

We have had many instances in this manual when we referto input-output (l/O) procedures or
procedures provided by the system; for example TWRT and DELAY. In section I we described
RTL/2 as a procedure orientated language and indicated that l/O, system and real-time facilities
are supplied in the form of procedures. Now clearly we do not wish each and every programmer
to include such procedures in his programs! However, although we do not have to write the
definition of such procedures, we must specify in some way their names - every name must be
declared or defined in RTL/2.

The basic unit of our programs so far has been the brick. We have seen procedure and data
bricks. We have also had things at inter-brick level - LET definitions, MODE definitions and,
of course, comments can occur at this level. Bricks and inter-brick specifications or definitions
can be grouped together to form a rnodule. A module is the unit of compilation - it may contain
just one brick or many. As the input to the RTL/2 compiler it must be self-contained in the
sense that it contains no names which are not declared or defined. Various modules can then be
linked together in some way to form a complete program or suite of programs. The method of
communicating to the compiler the specifications of names used in one module which are
defined in some other module (the two of which will eventually be linked together) is the main
subject of this section.

Before exploring the problem, we look a little further at the advantages of having a modular
structure. At a management level it means that various members of a team engaged on a large
program complex can work independently whilst retaining good interfaces for the eventual
linking together. At an individual level it provides the convenience of breaking the work into
reasonably sized entities which can be compiled separately and tested separately.

Once a module has been successfully compiled and tested, and any further documentation
completed, it can be "forgotten" until the rest of the complex is ready. Such a module can also
be used in an "off-the-peg" manner and linked with some other suite if required. The
communication of specifications between modules also provides the programmer with a natural
way of documenting the interfaces between modules and between other programmers; it forms
the "plugs" and "sockets" which enable the modules eventually to be linked together.

Procedures which we wish to call in a module but which are not defined in that module are
termed external procedures. To specify the name of such a procedure we write the keyword
EXT, a description of the form of the procedure and its name. Such a specification occurs at
inter-brick level and, as usual, is separated from other inter-brick and brick information by a

semi-colon. The description of the form of the procedure needs to record the nature of any
parameters and any result. However, unlike the definition of a procedure-i.e. a procedure brick -
the names of any parameters are quite immaterial and therefore omitted. The name of the external
procedure follows this description; this allows a list of procedures with identical descriptions of
course, to be appended. For the checks performed by the compiler (see section 8) such a description
supplies all the necessarv information. Thusour procedureTWRT would be specified as

EXT PROC (REF ARRAY BYTE}TWRT;
lf there were more than one procedure we would write

EXT PROC (REF ARRAY BYTE) TWRTl, TWRT2, TWRT3;
This tells us and the compiler that TWRT, TWRTl, etc are procedures having a parameter of
mode ref-array-byte, no result, and that their definitions are externalto this module. As we have
seen by implication, calls of external procedures are identical to calls of procedures defined in the
current module; parameters to, and use of a result of, any call must match the specification in
the same way.

Examples:

EXT PROC (REF ARRAY BYTE)
EXT PROC (TNT) INT IPP1X11

EXT PR0C (INTTINT) I|,JRTFT

TtJRTIZ 6glPUTS STRING Z
Z OUTPUTS SIGNED INTEGER 7.

Z RÉTURNS NUMBgR OF CIIARST OUTPUl Z

r FORI-lATTED INTEGER FRINT U

Procedures specified in external descriptions in various modules, must be defined in some module

- on linking modules together we must have some code to execute on calling such a procedure.
On defining a procedure which will be used in other modules, we must inform the compiler of
156

this intentionr(since it will need to create any necessary "plugs" or "sockets") by making the
name an entry which may be specified externally elsewhere. This is achieved simply by
preceding the definition by the keyword ENT. Thus a module to read a number of real numbers
and print out their average could appear as:

:i ÏHIS t'lliDLrLE RÊA0S AN INTE6ÊR T0 C0NTR0L THE NUHBER 0F REALS U
?, ÊËAD, ANO PRTNTS OUT THETR AVERAGE U

LET NLr10;

EXT PROC (IIIT) IHRT, X OUTPUT INTEGER 7"

çXT PRCC () INT IRÊAD' U READ IN INTEGER Z
EXT PR0C (REAL) R[{RT, y. OUTPUT REAL }.
EXT PROC () RËAL RREADI T REAO TN REAL T
ËXT PR0C (REF ARRAY BYTË) TWRT, % 0UTPUT TExT z

ENT PROC PRTNTAV ()T
INT NUt*ti=IREA0(),
RÉAL AV;*0.01

T0 r.,iuM Dr)

AV;=4Y + RREAD()r
REP'
AV:EAV/NU[,ll
Tl^lRr ("#NLthUMBER 0F REAI"S REAF i ") |
Il.lRT(NUM),
Tl^,RT('#NL#AVERAGE VALUE lS : '),
RhJRT(AV)I
THRT('#NL(2)#")r

ENDPROC,

No input or output is defined as part of the RTL/Zlanguage. For a given operating system
supporting RTLI2 programs, l/O operations will be defined in terms of a set of external
specifications. A standard set of procedures which should always be available in all RTL/2
systems has been defined, and details can be found in the manual "RTL/2 Standard Stream
l/O". The use of such standards allows machine-independence of programs to be maintained.
It is recommended, nevertheless, that l/O be gathered together in some convenient fashion
so that modification for differing systems operation can be made simply and correctly. The
basic method employed is streaming in which a seguence of single characters is read or
written. The procedures assume that there is a method of transferring characters between a

program and a channel - this channel being either a receiver or a sender. Usually a channel will
be a physical device (e.g. teletype, paper-tape reader, line printer) but there is no reason why it
should not be a simple internal arcay. The way in which stream changes may be made, and more
primitive character handling are described in Section 32. lt would be very tedious if all text had
to be processed as single characters; various facilities are available for breaking down and building
up sequences of individual characters. We therefore have a number of standard stream l/O
procedures which read from or write to the current input or output stream (the various formats
will be found in the stream l/O manual):

H INPUT PROCÊDURES T,

Ëx1 PR0C
EXT PROC

ÊXT PROC

INT IREADI Z INPUT INTEGER.A
FRAC FRÊA0r 7" INPUT FRACTI0N X

REAL RREADI Z INPUT REAL T
EXT PROC (REF ARRAY BYTE,RÊF ARRAY tsYTE) INT TREAD'

7, RÊAD I N TEXT TO SPE C I F I ED ARRAY T,

T SECONO ARRAY CONTA I NS L I ST OF X

Z TERMINATORS, RESULT IS NUMBER 7.

r OF CHARACTERS REAO /
157

UNFORI"IATÏED OUTPUÏ Y.

EXl PROC (INT) IIJRT,
EXÏ PROC (FRAC) FI/RT'
EXl PROC (RgAL) RI./RT,
EXT PROC (REF ARRAY BYTE)

FOR,HATTED OUTPUT T,

EXT PROC (INTI INT) II.IRlF;
EXT PROç (FRAC, I I',iT) Ft'lRTF

'EXT PÊOC (REAL, II.IT,INT) RI.}RTFT

M I S C E L L A N E O U S :'J

EXT PROC (INT) NLS,SPST

7, OUTPUT I NTEGER U

r OUTPUT FRACTION T.

r OUTPUT REA L T.

THRTI7. CUTPUT TEXT T

,d OUTPUÏ INTE6ER Z
Y. OUTPUT FRACTION T
7, OUTPUT REAL 'T

Z OUTPUÏ NEI.ILINES, SPACES 'Â

When we come to the systems and real-time functions, no such standards are available. For any
given system, however, there will still be an interface defined in terms of brick specifications.
It is likely that the basic facilities available will be similar between systems. The kind of functions
we are now talking about, for example the procedure DELAY which gives us a time lag,are
different in the sense that they may need to use hardware functions directly or use the interrupt
structure of the machine or system. Some machines have a multi-state nature and such procedures
may need a special linkage to invoke the primitivefunctions required. Such procedures are
termed supervisor calls and their different nature is reflected in their specification by the use of
the keyword SVC instead of EXT.

SVC PROC (INTIINT) INT STIMI
SVC PROC (REF INT'REF INT) REF ARRAY 8YTÉ LISlENI
5vc PR0c ilNT,INï) FAILI,FAl[2,

Ïhere is no analogue to ENT for the SVC procedure. Whether it is possible to write the actual
procedure in RTL/2 will depend upon the machine and the system. This will probably not
concern the user, only the system writer. Details of the method of definition and the special
linkages involved will be found in the documentation of specific systems.

Calls of SVC procedures are identical to any other procedures and, apart from a small difference
discussed in section 32 and the fact that we write SVC instead of EXT, their use is the same.
Specifying a procedure as SVC rather than EXT enables the compiler to generate different code
on a call to take account of any special linkage mechanism.

Similar considerations arise with data bricks. The position is not quite so simple, and in any case
much greater care must be taken in a multi-user situation because, unlike procedure bricks, data
bricks are not read-only; several users updating the same data brick in a random real-time
situation may lead to unexpected results. The use of data bricks for communication purposes in
such situations must be planned with this in mind, Such considerations, however, do not affect
the specifications. To take the simple case first, a data brick name may be made into an entry in
precisely the same way, by the addition of ENT to the definition of the brick. For an external
procedure we were only concerned with the name of that procedure and not with any parameter
names (which are in any case local to the definition of that procedure). Variables within a data
brick are global to the module in which the definition occurs, and their individual names are
certainly required. An external data brick is obviously one whose variables we wish to use in this
module but which is defined (and hence initialised and space created for it) in another module.
Firstly, then, an external data brick cannot contain any initialisations (not even of reference
variables - that these contain safe values is guaranteed in the definition of the brick, i.e. in the
module containing its ENT definition). Secondly, we want the names of the variables; these must
occur in the same order and should have the same names (although it may not always be possible
to check this thoroughly at the linking stage). Syntactically an external data brick appears as an
uninitialised data brick preceded by the keyword EXT. Variables specified in this way are global
to the module. Note that the requirement to have external data bricks is a reason for having data
bricks named - we do not use the name elsewhere.

158

T,IODË PERSON (INT AGE,SALARY, EYTE SËX,LOCATlON)I

ENl DATA PFRSONNE LI
I N T N 0 0 F E M P ! r Z ô 0 r N 0 0 F M E N : = 2 3 ? , T O T A L S A L I
ARRAY (500) PERS0N STAFF:=((0,0,0,0)(500))l

ËNODATA,

% THIS l.lILL BE SpÊCIFIED lN AN0THÉR M0DULE BY lHE F0LL0l'JIilG i 7"

MODÊ PERSON (INT AGE,SALARYI BYTE SEX'LOCATION),

EXÏ DATA PFRSONN6ll
INT NOOFEMP, NOOF!IEN,TOTALSAL,
ARRAY (5OO) PERSOIi STAFT,

ENDDATA,
ÉNDDATA STILL RECUIRËD TO lERMINATE BRICK SPËCIFICATION 7"

We also have SVC data bricks, but the keyword SVC is used merely for convenience; there is no
concept of supervisory data or a call being involved. However, there is a similarity in that access
to variables in such data bricks may be performed in a special way. SVC data bricks are supplied
by the system and to the user are similar syntactically to external data bricks. Variables in an
SVC data brick are global in scope, but the brick is "housekept" when a change of ôtack is made,
for example when the program is interrupted by a higher priority activity; these variables are
unique therefore to a run-time stack and may thus be used in a re-entrant manner by the program
using that stack. lt is likely that such bricks will be implemented by creating space for their
variables in the run-time stack.

Example: standard input procedures need somewhere to place the character which terminated
the reading of a number, and to store information about format errors. Clearly such information
is private to the program calling the routines rather than to the routines themselves (of which
only one copy exists, used in a re-entrant manner by many programs) and it is placed in an
SVC data brick associated with the run-time stack of the calling program:

SVC DATA RRSËD'
BYTE 1ÊR14CH, IOFLAOI

EI.{I}DATÂ
'

Further examples will be seen in Section 32.

The run-time stack is a dynamic structure, and which stack will be associated with a program is
not known at compile-time. Since the positions of variables in an SVC data brick are related to
this run-time stack it is impossible to calculate their addresses during compilation. This means
that it is impossible to use them as initialisations to reference variables in other data bricks.

Thus

SVC OATA RRSEDi
BYTE TEFMCHI IOFLA6I

ENDDATA,

DAlA LOCALI
RFF BYTE RB:=IOFLÂGI

ËNDDATA,

is illegal.

159

It is however perfectly legttimate to write:

ÉXT OATA S,
INT I I

ENOOATA,

ËN1 OATA GLOBI
REF INT RI:=II

ËftIDDATA'

For a large suite of programs we may wish to define all the external bricks available and include
these specifications in every module in order to save preparation time and to reduce the chance
fo error in continually copying the information. For a given external brick, there will be one
module in the suite which actually contains the definition of that brick, lt would defeat our
purpose if we had to remove the specification from that module. Hence we allow the redundant
specification of a brick as being external when the definition of that brick occurs in the same
module. Naturally, though, the specification must match the definition of the brick which must
be an entry! Redundancy in the sense of bricks not actually used in the module is also allowed,
of course.

LET SPsf t,

EXT PR0C (RÉF ARRAY BYTE) TtlRTr
EXT FROC (INT) ACTIONI

fNT DATA MESSI
ARRAY (?O) RËF ARFAY EYTE MESSA6ES:s(,N0 60u,

"STOP",
'LOt.lE'R OFF"o"(16), z SPAFES i"
" I ILÉ6AL MESSA6EO

)r
ËNDDAÏ4,

ENT PROC ACÏION (INT X),
IF X<1 OR X>20 THÊN

x;820'
ENDI
TI{RT(MESSAGES(X))I

ENDPROC'

EXT DATA 14ESSr
ARRAY (20) REF ARRAY BYTE MEssA6ESr

ËI'IDDATAI

The ordering of bricks and inter brick information is, in general, immaterial; the only definition that
must occur before its use is the LET definition because of its textual replacement characteristics.
People will develop their own orderings of information and bricks. Placing all the external
specifications and definitions first makes the checking of cross-references easy, and the grouping
of logically coherent bricks may aid understanding. Note however that the compiler may swap
the ordering of bricks for efficiency within the machine, for example placing all read-only coding
together. In general it is likely to be more efficient to have any data bricks preceding the
procedure hricks.

Note also the problem of finiteness. Many systems impose a limit on the number of characters
in names which sulive to the linking stage, and it is wise to keep externally known names fairly

160

short, or at least significantly different in their leading characters since only these may be used.
The compiler also places finite limits on the total number of various items (e.g. names, constants)
it can accept and the overall size of a rnodule. Moderation is sensible and good practice in the
design of modules.

Two further forms of communication exist in RTLI2 and are now discussed.

To identify program text RTL/2 hasatitle item. This consists of the keyword TITLE followed
by any sequence of characters not containing a semi-colon {which separates the item from the
remainder of the text and effectively terminates it). Within the item, other keywords or items
have no significance whatsoever. A title is a means of labelling all or part of a module. What
happens to titles is implementation dependent, but the idea is that they can be used to label the
obiect code and may be printed oLlt for instance on compilation of the module and loading the
object code into the machine. They should be thought of as comments which are "passed on"
and not "thrown away" by the compiler. A title is an inter brick item whose position is
immaterial, though it is most natural to use it as the heading of a logical group of bricks and
other information.

Example:

TITLË
çOMPOUND INTERËST PROBLEM
J.SMITH 31 /1217? ,

r NOTE THAT NgL'LINES ARE PERMISSIBLE Y,

To communicate with the compiler, an option item is provided in RTL/2. As with a number of
topics in this and subsequent sections some of the details are implementation dependent and
the appropriate manuals must be consulted. We give here the general syntax and the way in
which it is intended to be used.

Syntactically, an option item consists of the keyword OPTION followed by an unsigned integer in
brackets and a sequence of opitems separated by commas. The item is separated from the rest of
the module (and hence effectively terminated) by a semi-colon. An opitem is any sequence of
alphanumerics;which sequences have any significance and what that significance is, is
implementation dependent. Typical opitems are BC signifying that a bound check on array
element access is required and CM requesting explanatory material (not the same as the
comments in the RTLI2 text) to be included in the object code produced by the compiler.
Option items, again, are inter brick items; their position is significant however. From the point
of occurrence of an option item, the options requested will be employed by the compiler.

Thus:
OPTION(3) CM, BC;

informs the compiler that from this point onwards in the module, we wish to include a bound
check on every array element access not checked at compile time, and to have the object code
annotated. This option applies until the next option item or the end of the module is reached.
Every option item thus replaces the previous one; any opitems not explicitly mentioned in the
item are reset to a default value (defined by the implementation). We can think of an option as a
command to the compiler to set a number of 'switches' to a desired combination.

What is the use of the integer in brackets? There will be some method when running an RTL/2
compiler to supply, via job-control language or teletype for instance, an option-like command.
This option will then for this compilation replace all option items in the text having the same
integer key.

161

Example

0PTt0l.i (1) xYrPQt

OATA S,
a

I

ENDDATA,

OPTION (7'r. , 7" ALL DETAULT VALUES TAKEN N

PROC P1 ()r
I

|l

ÊNOPROC,

0PrI0N (2) BCr

PR0C ?2 ()r
a

I

ENDPROC I

0PTI0f'l (5) P0r

PR0C P3 ()r
t

I

ENDPROC'

lf we then supply OPTION(2) TR, BC; at compile-time, the module will be compiled as if the
text were:

OPlION (1) XYTPOt

OATA S I
I

I

ENODATA,

OPTION (2' TR,BCI

PROC P1 ()r
t
a

ENDPROC
'

OPTION (E) TR,BCI

PR0C PZ ()l
I
a

ÊNDPROC,

0PTt0N (3) PGr

PR0C P3 ()r
t
a

ENDPROC,

162

ïhis facility allows temporary alteration to the module without actually modifying the text.
The main use of this will be to compile modules with additional bound checking and diagnostic
aids requested by compile-time options until they are fully tested; the module can then be
re-compiled without compile-time options (when, of course only the options in the text will
apply) in the form finally required without needing to alter the text. Note carefully though that
only options with corresponding integer keys will be overridden by options supplied at compile-
tim.e.

The meaning of bound checking on access being optional, mentioned in section 14 should now
be clear.

Titles and options are items as def ined in section 3. However they are not quite the same as the
other items which we have encountered - names, constants, comments, strings and separators.
Titles and options are not permitted in LET definitions, there is no obvious reason for such a
use so this is hardly a restriction; for this reason the other items are called let-items and hence
the permissible sequence in a LET definition is a sequence of let-items, Similarly MODE and
LET itself are not let-items.

Section 30 example

1. Write a module which will read in two real numbers separated by an arithmetic sign and
print the result of performing this operation. lgnore problems of layout characters and
format.

163

31. Stacks and systems

In all but the simplest real-time systems, there will be many pieces of program running
"concurrently" which are unrelated particularly with respect to time scales and response-times.
To the outside world, these various operations will appear to be in parallel; in fact, each will be
given computer time on some time-sharing basis (e.9. by time-slice, by priority, by some
scheduling algorithm). For example we might program a machine to scan and control a section
of plant every second, print alarm and monitor messages as they arise, perform a sequence of
operations with an irregular time structure, perform an optimisation calculation (not very time
conscious, perhaps, but demanding considerable processor time) and print a log every hour. Here
we have five distinct operations (though of course they may need to communicate with one
another) with quite different requirements. Each operation defines atask - the dynamic life of
a program in the machine. A procedure brick is (ultimately) a series of machine instructions
defining some logical process, whereas a task is the sequential execution of those instructions.
Why do we make the distinction? We mentioned in section 17 that the code of a procedure may
be employed by several users simultaneously and for this reason the code is read-only and
re-entrant. This is possible since each call results in a new incarnation of local variables and other
information in a stack. Thus each concurrent task must have its own run-time stack. The life and
progress of a task, the sequential calling of procedures, is the dynamic behaviour of its stack.

Such stacks may be defined in RTL/2. A stack is the third and final brick in RTLl2. As an entity
it is simply a lump of memory,that is it consists of a set of locations in the store of the computer.
The only property possessed by a stack is its length, that is the actual number of locations. In
some machines it is convenient to measure this in bytes, in others in words; the units in which a

stack is measured is therefore machine dependent. Syntactically a stack brick consists of the
keyword STACK followed by a name and an integer representing the length of the stack being
def ined.

STACK WORKAREA 2OO;
As usual, this definition is separated from other bricks by a semi-colon. For the identifiers of
stacks to be communicated between modules, EXT and ENT are used just as for procedure
and data bricks and the same redundancy rules apply; when specifying an external stack we are
only interested in declaring the name, and so no length is necessary.

ENT STACK MYSTACK 350;
EXT STACK WORKAREA;

The association of a stack with a task, and its initiation are system problems and are not discussed
here;this information will be found in the relevant system manual.

Every time a procedure is called, the amount of stack in use expands. This calling process may
occur many times (particularly in recursive situations) and a stack is of finite length. We cannot
simply continue beyond the end of the stack because we may be corrupting other important
locations. Hence there must be a check on each new procedure entry to ensure thatthere is

enough space left in the stack to accommodate the new link cell, local variables and work area.
lf there is insufficient space, a run-time failure occurs; note that it is impossible for the compiler
to calculate stack requirements exactly, since it does not know what sequence and nesting of
procedure calls will actually occur. Details of how to estimate stack requirements, given a
knowledge of probable dynamic behaviour, are given in system manuals.

We have already encountered a similar run-time check, that of verifying a subscript for an array
element. How are such checks performed? Naturally there must exist some instructions in the
machine to perform these actions and the compiler inserts the necessary commands to invoke
these tests. These instructions form the basic environment for any RTL/2 system and are called
control routines. The details of these are completely implementation specific and they are
hand-coded in the relevant machine language.

Knowledge of the existence of run-time checks and the control routines is necessary for the
understanding of the remainder of this section.

RTL/2 is designed in such a way thatusers'programs should be secure. In a process control
situation and multi-task environment corruption of another program or its data area might
prove disastrous. Array bound checking, stack checks on procedure entry, warnings where a

variable name may be taken out of scope are examples of the way in which this security is

achieved. However, one of the other aims of RTLI2 was to enable the majority of an operating

164

system to be written in a high-level language; for this use some of the restrictions and overheads
are not acceptable. To cope with this, two forms of the language are defined; the complete
language known as the system language and a more restricted subset, the application language
which is the form we have been presenting so far.

ln the system language, the programmer has far greater freedom, but also, of course, the
responsibility for ensuring the safety of his actions. When presenting a module to the RTLIz
compiler the form of the language required must be specified; how this information is given to
the compiler depends on the host machine on which the compiler is running.

How does the system language differ from the applications language as presented so far? The
main differences are in the checks performed, either at compile-time or run-time.

1. All array bound checking is optional (except for the case of a constant subscript at the first
level) whether we are accessing an element, storing into it or passing its name to a reference
variable.

Application System

F irst subscript constant
Plain array access

Plain array storage/other array
access or storage

Compile-time check
R un-time check optional
R un-time check obligatory

Compile-time check
R un-time check optional
Run-time check optional

2. Greater freedom in the use of reference variables. In the application language all reference
variables must be initialised on declaration to ensure that they contain safe values. This
restriction is lifted in the system language and the onus for sensible contents and use is on
the programmer. :

3. Allied to 2, the warning messages concerning the potential risk of taking a variable name out
of scope are optional.

4. The stack check on procedure entry is optional. In some systems, where the check is a
minimal overheadanyway, this option may not be available.

Wherever possible, it is recommended that the application form be used. In many situations
where the system form is essential it is feasible and desirable to compile the module initially
in the application form until it is fully tested.

The control routines, mentioned above, are not written in RTL/2. In writing systems programs,
certain situations are impossible to handle in a high level language, for instance the handling of
physical devices and hardware interrupts. Such routines must be written in the appropriate
machine code and de facto will be highly machine dependent. A facility to include sections of
machine code within procedure bricks is available in RTL/2. As one can write almost anything
in machine code, no security can be achieved, and so its use is restricted to the system language.
Use of this facility should be confined to areas impossible to code in RTL/2 or highly time-
conscious; RTL/2 in these areas can still be used to advantage to document the process involved.

Being almost completely machine dependent, it is difficult to define the facility; as before, we
shall attempt to convey the general philosophy, and refer the reader to the relevant
implementation documents for the details.

A section of machine code is introduced by the keyword CODE. The section behaves as a

statement, the code-statement (this is the remaining statement type mentioned in section 20).
For syntactic purposes a code sequence is also classed as an item, but not a let-item.

Some controls are still retained within code sections. CODE must be followed by two decimal
integers separated by a comma and terminated by a semi-colon. These values will be interpreted
in a machine-dependent way, but are likely to be used to specify the number of locations
occupied by the instructions and the number of working locations required on the stack.
Naturally the units employed will also be machine-dependent. Within this "heading", layout
characters may occur in the usual way. lmmediately following the semi-colon we are in the code

165

sequence itself, and layout characters stand for themselves and are not removed : their
significance depends on the particular machine code.

The statement itself is likely to consist of simple machine instructions. However, particular
RTL/2 variables may be required within the sequence, and we do not wish to have to rewrite
the code section every time we make a minor alteration elsewhere in the module. For this reason,
there is a means of denoting RTL/2let-items within a code seguence. Only allowing let-items is

again no restriction, since sensible interpretations could not be put on other items.

For each implementation, two special characters (trip characters) are defined which are not often
used for any other purpose in the machine code. Let us assume in the following that the
particular characters chosen for some machine are * and /. To insert anRTLl2let-item we write
the item preceded by thefirsttrip character (with no intervening layoutcharacters) thus:
*FRED, "27, *OCT 77, *"STRlNG". The trip characters themselves may be inserted in this way:**, */. What is actually inserted in the object code for a particular let-item is machine-dependent,
and details will be found in the relevant implementation documents; for a variable it is likely to
be its address or its displacementfrom the appropriate link cell on the stack.

In particular, keywords are let-items. RTL is another keyword and is used to terminate a code
statement. However, as we are in a machine-dependent sequence (where RTL may have some
other significance), it must be presented in the form of anRTL/2let-item; i.e. it must be
preceded by the first trip character.

c0DE 4tQt
r.40v f 5, x0
JMP ô*L

*RTL,

, ASSçMBLER COMMËNT
*I, L IS LOCAL LAtsFL Y"

Note the use of a comment item : this differs from the machine language comment in that it
disappears on compilation whereas the machine-code comment will be passed on as part of the
sequence.

Names behave very much as they do outside code sections, in particular with respect to scope
rules. Thus names defined by LET definitions will be replaced by the correct sequence of
let-items. We can also set local labels within a code sequence by using the usual construction
(plus appropriate trip characters) and jump into the statement using this name.

c0cE
I

I

**t:; *E rt,rl0 RTL/a MACR0ITEMS ! Tt/0 TRtp CftARACTËRS I

t
*RTLT

:
GOTO R L;

To minimise the possible errors due to changes of definition, and allow the compiler to perform
some checks within the section, a non-local variable name must be presented with the name of
the data brick, or mode name in the case of a selector, to which it belongs. The syntax consists
of appending the brick name preceded by the second trip character - this is the sole use of the
second trip character.

166

DATA GLOBI
INT II

ENDOATA,

PROC t'lttlN ()t
I NT X :;0tT 1 600?0 I

!

!

C0DE 6r0r
M0v ô*x(5)r*t/6108

*RTL,.

I

I

ENDPROC'

Names of bricks and modes may be presented simply preceded by the first trip character. In the
mode case, the interpretation is likely to be to substitute the space occupied by one record of
this mode; for a brick, the interpretation will be more machinedependent.

167

32. Non-plain modes

We have dealt completely with the four plain (arithmetic) modes in RTL/2 - real, integer,
fraction and byte; we have also seen non-plain modes in the form of records and references to
both variables and structures.Wehavebeen careful to stress the nature of certain other objects
as being entities - a procedure as a process represented by a sequence of machine instructions, a
stack as a lump of memory, a label as a particular point in a program. The only sensible way to
talk aboutthese entities is by using their RTL/2 identifiers, that is, their names. These namêsare
quite different from the names of variables; the name of a variable identifies a location (or set of
locations) whose contents can be changed. Names of procedures, stacks, labels relate to "constent"
items - they are literal names used as a shorthand for the entity. This is why, throughout this
manual we have used 'set', 'defined' for these names rather than 'declared'.

Three further modes (non-plain) are provided in RTL/2 to enable such literal names to be
manipulated. There is nothing comparable for the (literal) names of data bricks, since there are
no operations which we can perform with them.

Ïhe simplest of the three is the mode stack. We can declare variables (and arrays and components)
of mode stack using the keyword STACK; such variables can contain the (literal) name of a
stack brick. We can also declare ref-stack variables, which, naturally, can contain the names of
stack variables (though a requirement for such a structure will be rare). Being non-plain, stack
variables must be initialised on declaration in an applications program.

STACK J0B 150r Y. DEFINËS STACK BRICK AND LITERAI JOB Z

DATA SYSTEPI'
STACK MYSTACK : -NËf'ISTACK I eJ0Br

tr DECLARES STACK VARIABLES T
REF STACK WHICHI=MYSTAÇKI

ENODATA,

r THIS IS OF Ti{É SAI,'IF FORM AS THË FOLLOI"IING INTEGER CASE EXCEPT Z
Y" TNAT THE INTE(iER 'LITERALI OR CONSTANT DOËS NOT I{AVË TO tsE X
7, TECLAREO OR OEFINED 'A

7i LTTEiIAL 3 DT]ES NOT NEED TO BE DEFINED ï.
DATA SI

INT I:s3r
REF INT RI:=I,

ËNOOATA,

The use of stack variables will be confined mainly to systems programs, where the manipulation
of stacks is required. We know how to declare and initialise such variables (note that they are not
necessarily static - hence we can declare local stack variables) but what operations are available?

Assignment to stack variables is quite standard; the usual dereferencing rules being applied. ln
particular objects of mode stack can be passed through the parameter mechanism. Thus a
procedure to send a message from the current task to another task (identified by its stack) with
a byte result indicating success or failure, might take the form

PROC SEND(STACK RECEIVER, REF ARRAY BYTE TEXT}BYTE;

ln practice this might appear as a supervisor call, and an actual call would be programmed as;

SVC PFOC (STACK,REF ARRAY BYTE) BYTE SEND,
EXT STACK OTHËRJO8,NËXTJOEI

I F SEND (OlHERJOB,'STOP') #O THEN .. 7^ MESSA6E NOT RECE I VEO 'A

y, THIS IS AN EXAI,tPLE AF THE USE 0F A SIDE-EtFECT I
'A THE MESSAGE IS SENT AS A SIDE-EFFÊCT OF TESTI!\G i.iHETHER
'/, IT l^l0RKED j4

168

Apart from assignment, the only valid operations involving stacks are the comparisons of equality
and inequality. Thus we can write

IT RECEIVgF=OTHERJOB 7, FECEIVER DEREFERENCËD T THEN .I
IF [IHICHfMYSTACK 7, I,lHICH DEREFEREI'ICED TI./ICE, I'JYSTACK ONCE T THEN
IF |.li{ICHro:MYSTACK 7, LIHICH r}EREFERÊNCED 0NCE Z THEN rr

Z THIS C0t4PARIS0N IS 8ETf,JEE,\i ThÉ NAMES 0t STACK VARTABLES f

When we come to the case of procedures there are in fact many modes; the problem is similar to
the one for specifying external procedures and stems from the fact that we must also define the
nature of any parameters and result. The form oI descriptor used is identical to that for an
external specification, consisting of the keyword PROC, a list of the modes of any parameters
separated by commas and enclosed in brackets and the mode of any result; as usual the brackets
are still required when there are no parameters. As before, we do not need to include any names
for parameters - in any case, these will effectively be different depending on the contents of
such a procedure variable. Using these descriptors we can declare static and dynamic variables and
arrays or components of mode procedure whose contents are the (literal) names of procedure
bricks of the same specifîcatron. Being non-plain variables, they must be initialised in the
application form of the language. Ref-procedure variables are also allowed, (again with the
appropriate specification) but their use is likely to be unusual.

EXT ÊROC () BYTE CHARTN;
EXT PROC (BYTE) CHARCUTI

PROC 0."'T I, REAL Ê)I

a

ENDPROC'

PROC O (II.IT K' REAL S) I
I

I

ENDPROC'

ç1AïA Sl
PROC () EYTE READI=CHARINT
PROC (INTIRËAL) DUMMY:EPI

TI,lDDATA,

PR0C ÂLPHA ()l
PRrtC (BYTE) t1Y0UT:ÊCHARÛL!T,

t

FUMt'tY : sQ I

a

TNTPROC,

Assignment is completely standard, the procedure brick represented by the literal name being the
form of the 'constant'. Comparisons using =, #, :=i, :#:, follow in precisely the same way as for
stacks.

The existence of procedure variables allows procedures to be called indirectly. lf in procedure
ALPHA we write MYOUT ('A'); what do we mean? MYOUT is a procedure variable which
cannot stand by itself; hence we dereference it to yield a literal procedure (in this case

CHAROUT);the required byte parameter is supplied and CHAROUT will be called. ln our DDC
example we could provide achoice of control by this means;we need to add a procedure
parameter to the procedure DDC. On calling DDC, we pass the (literal) name of the control
algorithm we wish to use.

169

ra

ENT PROC DDC (PROC () REAL CON.TROL),
Z SET CONSTANTS AND INPUl MEASURFMENT U

N EI,i ERR ; ESET PO I NT-I-IEASUR E D I
C0RRECTI0N;rC0NTR0L(), f DEREFERENCE C0tt1ps1 T0 YIELD AL60RITHM 'A

VERYOLDERR 3=QLDERR;
OLDERRs!NEI.JÊRRI
r E,Tç iL

ENnPR0Ct

ENT .lATA SYSTEMI
REAL MEASUREDISETPOTNT' Z CURRENT VALUES T

NEI.IERR,OLDÊRRI VÊRYOLDERR, Z LASl THREË ËRROR TTRF{S %

INTERVAL, i4 TIME INTERVAL 7,

CORRECTION, Z DELTA P: VALVE CHAIIGË 7.

K r Lr M, 7, C0NSTANTS Z
ÉNODATA,

The calling module will have:

EXT DATA SYSTEMI
REAL MEASUREDI SEÏPOINI, T CURRENT VALUES T

NEtJERRT0L0ERRTVERY0LDERR' Z LAST ïfiREÊ ERR0R TERMS U

INTERVAL t /. TIME INÎÉRVAL '/
C0RRECTION, U OELTA p a VALVE CHANGE 7.

KrLrM, 't(CONSTANTS U

Ef'JDDATA,

EXT PR0c (PR0C() REAL) 0DCr

PRoC PR0P () REALT
RETURN (Kr (NEIcERR-0LDERR)) I

Ëlr0PR0C,

PROC PROPINT () REAII
RËlURN (PROP() + L*NEt,JERR*TNTERVAL) I

ENDPROC,

PROC PROPINTOERIV () REAL,
RETURN(PRÛP() + PROPINT 0

+ Mr(NEt,lERR-2*0LDERR+VERY0LDÊRR) / INTERVAL),
ENOPROC,

ENT PROC MAIItlASK ()I

DI}C(PROPINT), Y, REOUIRËP AL6ORITHM PASSEO 7"

Z NOTE THAT IIO BRACKETS ARE REQUI FED HERE IOR PROPI I'iT 7N

7, l'JE ARç ASSIGNING I1 TO A PROCEOURE VARIABLE NOT CALLTNG IT T.

I
a

ENDPROC,

I

I

170

When all the actions are similar and can be parameterised in the same way, we can use an array
of procedure variables to perform the action of a switch.

M3 $WITCH I 0F L1 ,L?, rr. rL10l
L1: ACTION1 (),

GOTO LI

L?: ACTI(}NZ()I
60T0 Lr

110: '

U USING PROCËCIURE VARIABLE T

OATA ACTTONSI
ARRAY (10) PRCIC O NÊXTACTION!r

(ACTIONl , AClIONE, ... I ACTIONl O) I
ËNDDATAI

I

I

Mi NÉXTAcTI0N(t)()i
% NËXTACTION SUBSCRIPTËD GIVES A PROCEDURE VARTABLE Y

f DËREFËRENCED T0 çtVE A PR0CEDURE q NULL pARAMETER I
'/, LIST FOR CALL T

l.

*o,., norj,"ver, that the action taken on an out-of-range subscript will be quite different.

When calling an SVC procedure, the compiler may need to insert a special linkage, for instance
to take account of any multi-state nature of the machine. When calling a procedure indirectly
through a procedure variable, the compiler will not have any knowledge about the contents of
that variable, save the specification of its parameters and result. lt is impossible therefore to
decide to insert a special linkage. For this reason it is not legal to assign the literal name of an
SVC procedure to a procedure variable. This is the difference between SVC and EXT procedures
mentioned in section 30.

Example: Procedure variables are particularly useful when writing generalised routines. As a very
simple illustration, this procedure brick with a procedure variable parameter tabulates the values
of a given function f (x) in an array Y for a given set of values in array X.

PROC TABULATE (REF ARRAY REAL XIYI PROC (REAL) REAL FUNC)I
Y^ XIY ASSUMÊD TO BE OF THË SAME LENGTH X

r ALL X ELÊM.ENTS AS$UMËD 1O BE RELEVANT T,

FOR Ii=1 TO LEN6TH X PO

Y (I) : =FUNC (x (I)) r
REP'

ENDPROCT

Procedure variables lie at the heart of the recommended stream l/O mechanism. The basic
character input and output procedures associated currently with a given task are held in
procedure variables in a data brick; since this is unique to the task and must be re-entrant this
is an SVC data brick:

SV{ DÂ14 RRSIO;
PR0C () BYlÊ lNr
PRCIC (8YÏE) OUTI

€NPOATA'
171

lN0 will cause the next character to be removed from the input channel and returned as result;
this is achieved by calling the brick whose name is in lN. Similarly OUT ('A') will send the
character A to the output stream. Thus the module containing the text writing procedure could
appear as:

lITLE
ROUT I NE TO OUTPUT TEXT,

SVC DATA RRSIO'
PROC () BYTE II,II
PROC (BYTE) GUTI

ENODATA,

ENT PROC TTIRT (REF ARRAY BYlE TEXT)I
FOR T; C1 TO LÉNGTI{ TEXT OO

0UT(TExT(I))l
REPT

EN0PR0CT

The user may use these basic routines directly, and may need to change the contents of the
variables, although some systems will provide default streams and methods of changing channels
However the user can do it quite simply; to change the channel in use we merely have to change
the contents of the appropriate procedure variable.

ÊXT PROC (BYTT) LPOUT'

SVC DAlA RPSTO'
PROC () tsYTË IN,
PROC (BYTÊ) OUT,

ENDDATAI

PR0C P, () r

I

BLOCK
PROC (BYTE) RÉMOUTI=OUTT N PRESERVE DEFAULT PROCEDURE Z

0UT: çLF0UT,
t

a

0UTiçREl''l0UTl Y' REST0RE U

ENDBLOCKI
a

a

ÊN0pR0c,

The situation is a little more complex when we consider label objects. There is only one mode,
and variables of the mode label are declared using the keyword (our last keyword) LABEL.
Although the setting of a (literal) label defines a fixed point in our program text, and associates
an identifier with that point, at the time when that name is assigned to a label variable, the point
relates to the program text with respect to the particular incarnation of its procedure brick on
some stack; in other words it marks a point in the sequential execution of a program, a point in
some task. The named point itself is therefore ambiguous. The contents of a label variable
therefore contains additional information to relate it to a particular link cell on a stack; this
combination is known as a level-address pair,

As literal labels are local, they are only in scope within some block in a procedure brick. lt is
therefore impossible to initialise label variables in a data brick and illegal to attempt it. Label
variables (including local ones) are an exception to our rule for the compulsory initialisation of
172

non-plain variables; it is still compulsory to initialise all ref-label variables since we can have
globallabel variables which are valid contents. We shall see below that the potential danger of
uninitialisedlabelvariablesdoesnot leadtoanylossof security. ltdoesposeoneproblem
which is unsolved, but which is highly unlikely to occur in practice; what happens for an actual
record of a mode which contains both label and other non-plain components? Non-plain
components imply compulsory inatialisation of the record; the presence of the label variable
makes it impossible.

Having identified the problem areas, and by implication introduced the ideas of label and ref-label
variables, we now investigate their syntax and major uses. Assignment, parameter mechanism, the
use of the comparators =, #,:=i,:#: follow precisely the rules for stack and procedure variables;
note, however, that literal stacks and procedures are global whereas literal labels are not - we
must therefore ensure that labels are in scope when assigned.

PRoC P ()r
LABEL I,'HERE;;LI

a

L:

BLOCK
LABEL $0MEl,{flERE I ËLt

I

Mi
I

ENDBLOCKI
t
I

,I L IN SCOPÊ Z

tIHERË; =Ml
t

ENDPROC'

U ILLEGAL - M OUT 0F SCOPE Z

The main use of label variables (similar to procedure variables) is to enable indirect jumps to be
performed, with the ultimate destination set dynamically. Following the usual philosophy on the
use of names and dereferencing this is achieved by extending the goto-statement to permit the
destination to be specified as a label variable or a ref-labelvariable which will be dereferenced
once or twice respectively. However, on performing this transfer, we must ensure that the label
is still valid; that is, that the link cell with which it is associated is still in existence. This check,
the monitoring of generalised goto-statements, is performed by a control routine; the check is
optional in the system language in the same way as the stack chec*. lf the label is valid, the stack
is unwound to the appropriate link cell, and processing continued at the correct point in the
procedure marked by the label identifier. Thus the label variable (possibly as a parameter) gives
the ability to transfer to a 'global' label. This will be most useful for the handling of error
situations.

PROC P (LABEL FAI LLAB) ,
I

TEST(FAILLAB)I

ËNDPnoir

PROC TÊST (LABÊL FAILURE) INTI
I

I F . r r THÊN 60T0 FAI LURË, ENDt

eNDPR0ir
173

PROC MAIN OI
I

FATLI I ERROR AçTION T,

.
*ETURNI

a

$TART:
P (FA I L)

'a

Efl0PR0Ct

At run time, MAIN calls P which calls TEST, and the failure label is pased on to each in turn.
At this point, the stack will appear as follows:

PÉTESTé
MAIN LINK LINK \," LINK J
CELLc CELL <F CELL (È'

We have indicated the appropriate link cell by writing the contents of the label variable as the
pair FAIL/c.. What happens if, in TEST, we now obey the statement GOTO FAILURE?
FAILURE will be dereferenced yielding the pair FAIL/q and the control routine will be entered.
This will find that q is still valid, the stack will be unwound (thus exiting from TEST and P)

and processing will continue at the label FAIL in MAIN. Note that although TEST has a rezult
we do not need to specify one at this point; we are not returning a result to the point of call in
some expression, we are exiting to some point at which a new statement will be obeyed.

The following example illustrates the case where the test will fail; note also that if the variable L
(uninitialised in the data brick GLOBAL) had not been assigned to, the test would still fail -
hence our comment above that no loss of security is involved because of the impossibility of
initialisation.

DATA 6 LOBALI
LABEL L,

ENDDAÏ4,

PR0C 00PS ()r

Ml
a

Llrl4l
I THIS l,,ILL BE t,ARNED AT ç0MPlLE-TIME t
z As P0TEt'ITIALLY TAKING M 0UT 0F SC0PE Z

I

ËNDPROCI

PROC MAIN (),
I

00PS()r
6010 Lr
% l.lILL tAIL AT RUN-TlMe. THË C0NTENTS 0t L Z,

r (M) NO LONGËR IN SCOPE OYNAMICALLY T
I

ENDPROC,

174

o

o

'6
o.

.g
€o

Locals
for
MAIN

o.è
=o

I

'6
CL

g
6
c,

x
J

a
u-

other
locals
for
P

CL

3
I

'6
o
.g
.E()

U

a
l.|.

other
locals
for
TEST

Because inner blocks have no entry overhead, and a link cell applies to the incarnation of the
whole procedure, these tests can only be made at the procedure level. Hence the following will
not fail at run-time, but the offending assignment to O taking L out of scope will be flagged at
compile-time.

LABEL o:sM'
M:

t

BLCICK
Q:*L;

L;
ENOBLOCKI
I

60T0 0 t

The situation ,, *orr" when ref-label variables are involved; care must be taken over scopes when
using label variables.

What happens when the check of a generalised goto fails at run-time? Similarly what happens on
any of the run-time failures we have discussed so far (stack check, array bound check)? Such a

situation is termed an unrecoverable error, in the sense that it is unsafe for the program simply
to continue, since it may corrupt other program areas. No definite action is specified in the
RTL/2language but a recommended standard approach is given in the manual. "RTL|2 System
Standards". Within this standard, transfer is made to a label held in a label variable. The
user has access to this variable and so may specify its contents and arrange for.his own error
recovery; otherwise the system will supply a default value where well-defined actions will be
taken. As an unrecoverable error may occur at any time in a program, it is important that the
error label isalwaysdynamically in scope;a label attheoutermost level should therefore be
chosen. Intheeventof thelabel beingoutof scope,asecondunrecoverableerrorwill occurand
the system action be adopted. An integer value is also provided which will be zero normally, but
on an unrecoverable error will be set to indicate which error has occurred.

Other run-time errors which can only affect the current task and hence are not generally unsafe
are termed recoverable errors. The recommended standard here is to call an error procedure (held
in a procedure variable naturally) which has an integer parameter through which can be passed
anindication of the error detected.

All of this error information is clearly private to a particular task, and hence is held in an SVC
data brick.

SVC DATA RfTERRI
LABEL ENLI
trNT ERN,
PROC (INT) ERPI

ENDOATA,

Z ERROR LABEL I
X ERROR NUMBER T
Z RECOVERABL6 ERROR PROCEOURE X

The following example shows the use of this standard; note the good practice of remembering
the system error label and resetting the error label at appropriate points.

SVC DATA RFERR'
LAEEL ERLI
TNT ERN,
PROC (INT) ERPI

ËNÛDATA;

ERROR LABEL T
ERROR NUMBËA'/"
RECOVERABLE ERROR PROçEDURE T

T
v,

T

FXT PROC (ÊEF ARRAY BYTE) TI,JRT,
EXT FROC (I NT) IIiRTI
EXT PROC () CLOSEEVERYTHIN6' T. SI{U1 DOI.'N TASl T

175

PNOç RRJ OB 0 I Z RECOI'IMENDET STANDARD FOR J OB NAME Z
LABËt

:tMERLtaERLr
Z REMEMBER sYSTËM ERR0R LABEL 'A

a

ERL:IILT Z S€T PRIYATE ERROR LABEL T

,, ANy ÉRRoR HERE BRANcHEs To | ?(

t

ERg3=REMERL, Z RËSET X

:
RElURNI

Li ERL;;REMERLI T RESET TO PREVENl LOOPTNG ON ERROR IN CLOSING ï,
Tt,r|RT('UI'IRECOVËRABLE ERROR'),
Ir.lRT(ERN),
çT0SEEVERYTHING()r

ENOPROCT

Again note the difference of action between an array of labels and a switch when the subscript
is out of range; using an array allows us effectively to have non-local labels in our "switch"
action. Note that the switch statement may only contain literal labels which are in scope, and
not label variables. However, because of the run-time checks and the space occupied, using local
literal labels in label variables is not very efficient, and so arrays of labels are not likely to be
used widely.

Section 32 examples

1. Write a program to read in Roman numerals and print out the value in decimal.

176

33. Formal definitionof RTLIZ

The whole of the RTL/2language has now been presented. This manual has been designed as a
sequential text and is clearly unsuitable for use as a formal definition of the rules or as a reference
yvork. A formal, logical presentation of the language is contained in the "RTL/Z Language
Specification" manual. That definition is, of necessity, in a somewhat rarified form. This section
is intended as an introduction to the use of the specif ication manual.

There is a philosophical difficulty in defining a language in terms of another language; we need
some form of meta-language to enable us to define it rigorously. The specifiætion manual uses a
modified version of Backus-Naur Form (BNF) to do this. This is not nearly as terrifying as it
sounds! Constructions in the language are divided into c/asses and each class is given a name; we
have used many of these classes already in this manual. For example, we defined 'stringchar'to
mean any one of the characters of the RTL/2 Language subset of |SOT code, excepting newline,
tab, #, f, $ and ". In our definition rules we will use the class name 'stringchar'to stand for any
of these characters; conversely, wherever'stringchar' occurs we can replace it by any one of those
characters.

The characters also occur in the definition in their own right, and keywords appear in capitals
(e.g. PROC); these are known as terminal symbols of the language. Classes are written in small
letters. The definition of the language merely combines classes and terminal symbols in a compact
way. ln section 18 we described the structure of the while-statement as

WHILE condition DO
sequence of statements

REP

Our BNF description of the language issimply a formal version of this, in which each class, like
'condition', is rigorously defined.

The definition takes the form of a number of productions, each production def rning a class in
terms of other classes and terminal symbols. The class being defined is separated from its
production by the symbol ::= which stands for "is defined to be". Three other symbols are used:

I stands for "or"; thus AIB is read 'A or B'.
I I enclosing a sequence means that the sequence may optionally be present.

ellipsis dots indicate that the previous item may be repeated as many times as we like.
(The four symbols should more strictly be called meta-symbols). Hence tAlBl... stands for any
list (including the empty list) of the alpha characters A, B. Examples of members of the class are

A
BA
ABBAAABAB
ABBBBBB

In our formal notation, the class for the while-statement is defined by
whilest::= WHILE condition DO sequence REP

This is identical to our earlier description; the definition of 'condition' and 'sequence' need to be
added of course.

As a simple complete example, consider the formation of a name in RTLI2; in section 2 we
defined a name as "a sequence of letters and digits with the proviso that the first character must
be a letter". This is summarised in BNF as follows using three classes'letter','digit'and'name',
and employing all the meta-symbols

letter ::= AlBlClDlElFlclHllUlKlLlMlNlOlPlOlRlSlTlUlVlwlXlYlz
disit ::= 011 l2l3l4l516l718l9
name ::= letter iletterldigitl...

This merely gives the syntax of the language, its grammar. The entire grammar is given in this
form in an Appendix of the Specification Manual. lt does not say what is meaningful, nor how
constructionswill be interpreted. Thus in the BNF productions you willfind no mention of
type-checking or precedence of operators. This information is given in normal English in the
text of the manual.

We use the BNF to illustrate one or two further points concerning RTL/2.

177

The module isdef ined by
module ::= moduleitem [; moduleitem] ... eom

Interpreted, this says that a module consists of a number of moduleitems (at least one) separated
by semi-colons and terminated by 'êom'. lf rnæ look at the class'eom' we find

eom : := end-of-modu le-character

Syntactically each module must be terminated by such a character, which is not part of the
language character set, This character tells the compiler when to stop, and may also inform the
reading device of the end of a character f ile. Whether such a character needs to be appended
explicitly or not depends on the host machine on which the compiler is running and the form of
the input medium on which the module is presented; in some systems an end-of-module-character
will be supplied automatically. lf this character is read in the middle of an RTL/2 item, the
compiler will produce a failure message, and, of course, not read any more of the module.

The block statement is def ined by
block ::= BLOCK blockbody ENDBLOCK

blockbody : := [simpledec;] ... sequence
simpledec : := simplemode initidlist

The classes'sequence', 'simplemode', 'initidlist'do not concern us here. The class'simpledec'
cannot be a null item and hence the following RTL/2 is illegal.

BLOCK; INT l;...
The first semi-colon effectively defines a null statement and hence no declarations can follow it.

Note that GOTO lF A=B THEN L ELSE M END is legal since
gotost ::= GOTO expn

and 'expn' allows an ifcxpression. However what the BNF doesn't tell you is that, in general,
such a construction is not efficient! lt is better to write:

lF A=B THEN GOTO L; END;
GOTO M;

Effectively the if-expression yields a name conditionally; note that this cannot be done for an
array name which is to be subscripted or a procedure which is to be called.

lF A=B THEN SIN ELSE COS END (Pll8.0); is illesal.
The BNF tells us so since:

procst ::= variable paralistlidentifierparalist
identifier ::= name
variable : := simplevblelsubscriptedvblelrecordcomponent

and we can see that an if-expression for the name is not allowed.

Following chains of definitions in BNF can be quite long, but it is worthwhile persevering if you
have a problem in syntax.

Semantic restrictionscan befound in the specification manual and in relevant implementation
documents; the machine independent rules have been given in this manual. The specification
manual is laid out, with examples; the declarations for these examples are collected at the front
of the manual. lt is worth pointing out that examples in some classes are considered as separate
and not parts of a program; hence there may be no semi-colons separating them.

That is RTLI2 presented somewhat abstractly. Like allskills, there is no substitute for experience
in learning about RTL/2, so go forth and program!

178

Appendix 1

R-lL/2 Language Subset of |SOT

Character

HT
LF
SP

#r$
-/o

&

(

)
*

T

,_

0-9

;

:

Decimal value

I
10
32
34
35,36, 92
37
38
39
40
41
42
43
44
45
46
47
48-57
58
59
60
61
62
63
64
65-90

Language use

layout-horizontal tab
layout-newline
layout-space
string quote
not equals, strings
comments
not used
byte quote
open bracket
close bracket
multiply
add
comma
minus
constants, records
divide
numbers
labels, assignment etc.
statement, declaration separator
less than
assignment, equals
greater than
not used
not used
names, numbers

?

@

A-Z

Notes:

(i) The characters &, ? and @ are not used for any particular purpose in the language but they
may occur in strings, comments and titles.

(ii) Because of lack of uniformity in manufacturers'treatment o1#,t and $ it should be made
clear that they are considered interchangeable and all mean the same thing. The intention
is that on any preparation equipment the key marked # may be used with confidence. Note
that no confusion can arise as to the internal value as far as representing these characters in
strings is concerned because they cannot stand for themselves.

Appendix 2

Keywords, showing sections in which new uses are introduced.

ABS
AND
ARRAY
BIN
BLOCK
BY
BYTE
CODE
DATA
DO
ELSE
ELSEIF
END
ENDBLOCK
ENDDATA
ENDPROC
ENT
EXT
FOR
FRAC
GOTO
HEX
IF
INT
LABEL
LAND
LENGTH
LET

5
26
14
22
17

19
28
31
I

18,19
11

1'l
11

17
I
I

30
30
19
23,25
12
22
11

13,25
32
27
14
15

LOB
MOD
MODE
NEV
NOT
ocT
OF
OPTION
OR
PROC
REAL
REF
REP
RETURN
RTL
SHA
SHL
SLA
SLL
SRA
SRL
STACK
SVC
SWITCH
THEN
TITLE
TO
VAL
WHILE

27
13,25
29
27
27
22
20
30
26
8,32
2,25
2

18,19
I

31
24
27
24
27
24
27
31,32
30
20
11

30
19
4

18

Appendix 3

Answers

** SECTI0N Z **

1,
Ê) cONTAINS I o N0T A DI6II
F) NO N ICIl FOLLOIIIHG !
G) NO DECIMAL POINlI COMI'{A ILLE6AL
J) NO LÉADINç DIIiIT
N) SFACE BEFORE EXPONENT
O) ILLEGAL CHARACTTR *
P) FOINT IN EXPONENT
S) NO IEADING DI6IT

7-.
A) Ç,7e6Ê2
c) 0.673 E4
H) 0,158-I
K) 0.?7e12
M) 0.1 6E-7
R) 0.117 4E?

B) 0,380
D) 0.154E1
I) 0.10000183
L) 0.23E-1
a) 0,ôE9
T) ('.2784

.
C) C0NTAtNS N0N-ALPIIANUMERIç
D) C0NTA I NS lI0N-A LPIIANUMER I C '
E) DOÉS NOT START I".l T TH LËTTE R

6) N0N-ALPHANUMERIC #
I) RËSERVED UORD
J) I IS N0N-,4LPHANUMERIC
M) DOES NOT START I..IITH LfTTER
N) e IS N0N-ALPHANUMERIC
T) SPACE: THIS IS TN FACT TT.JC NAMES

l+.
R E A L I N C O M E I N E T T A X P A Y I A L L O U A N C E S I T A X C O D E I T A X

** sEcTI0N 4 t*
1.
vARr td x Y z A ts c D

STAT
1 0.0 0r0 * * * * * *
e 0,0 0,0 1.0 1.0 * * * *
3 0,0 0.0 1,0 1.0 Y Y r *
4 0,0 0.0 1t0 1.0 Y Y r. Z

5 0,0 0,c 0,0 1.0 Y Y * 7
ô 0.0 0.0 0,0 * Y y r z
7 4.0 0,0 0.0 3.? Y Y , Z8 0,0 0.0 0.0 3.2 Y Y W Z9 0.0 0,0 0.0 3.2 Y Z Vt r.

1C 0.0 0,0 0,0 3,? Y Z W Z11 0,0 3.2 0,0 3.? Y Z t,.l Z
1? 0.3 3,? 0.0 3,2 Y Z h' Z13 0.3 3,? 0.0 (t,3 y Z, w Z

* INDICATES UNDEFINED

TIIË SIXlH STATEMEI'iT ZITC IS MÊAT{IN6LÉSS. lHE LEFT HAND SIDE
RECUIRES A REAL NUMBER' C IS A R€F-REAL VARIABLE, BUT
DERFFERENÇING PROOUçES AN UNPREDICTABLÉ RESULT STNCE NO
ÂSS I6NMEI.JT OF A NAMË ItAS 8EËN I'IADE T NTO C I THUS THÊ SËCOND
DEREFÊREtlCIrrG IS UfiDÊFINED' AND N0-0NE KN0tiS WHAT VALUF
i.II LL BE PLACED IN 7 . THIS CAN BE DANGÉROUS.

** sËcTICIN 5 **

1.
x

76.3 UNDEFTNËD
e6'5 -0r?7
26.3 -0 .27
?+,3 0 ,27

-Q.77 0.?7
-0, 27 0.?7
-0.27 -2.3

C ' 01 -2.3
-2.3 *2.3

é.
REAL XrPl
REF REAL YT

y;rPt
x : Ê2ô.3 I
VAL Y:=-0,27i
Z REMOVE II.JO REOUNDANT ASSIGNMçNTS,4
Xl=-Yt
VAL Y3=-;11
VAL YIP-?.3,
y;=0.C11
Xir-ABS Yt

CLEARLY ËXAMPLÊS AT THIS STAGË ARË VÉRY ARlIËICIAL I T}IE ABOVÊ
,PRO6RAM' COULO BE SIMPLI F I ED 1O TIIE SING!E ASSTGNHENT

VAL Y;tXi=-2.3i
ÀND ALL THE INTERMEDIATE ASSIGNMENTS

CT}ULO BE RFGARDËO AS REDUf.]DANT. THË AIM IS TO GET YOU TO hJRITE RTL/Z
AND Iii TIIIS CASE APPRÊCIATE AGAIN THE USE OF VAL.

r*S€CT I0N 6 **

1 .1) REAL READl , READ2 I ERROR I
ERROR I =ABS (READl -READE) / READl r1 OO. OI

2) REAL FAHRrCEf.tTl
C ENT ; 3 (FAHR.rl?.0) *5.0 19, 0l

5) REAL PI Z PRINCIPAL IN POUNDS Z
R I T RATE OF I NTEREST AS PERCËNTAGE PËR ANNUM T
TI U TII'IE IN YEARS Z
INTERI Y. INTEREST T

INTEllrÊPrRrT/100,0r

t+') cEAL XTBINOMIAI'XPLUSI l
XPLU$1r=X + 1.01
8 INOMIAL:=XPLUSl *XPLUSl T

B I N O M I A L I = B I N O M I A L * 8 I N O M I A L * X P L U $ 1 I
7; THIS IS MORE ECONOMICAL CIN MULTIPLICATTONS THAN I.'RITIN6 T
i, XPLUSl*XPLUSl*XPLUSl*XPLUSl*XPLUSl AND MUCH MORE EFFTCTENT T
r THAN ËXPANDTNG IN THE FORM X
Z B I N 0 M I A L : È 1 . C + X * 5 , 0 + X * X * 1 0 . 0 + X * X * X * 1 0 . 0 + X * X * X * X * 5 . 0 + X r X i X * X * X Z
i: OR THE FAçTORISED FORM 'A

I B I N A M I A I ; = 1 . C + X * (5 . 0 + X * (1 0 . 0 + X * (1 0 . 0 + X * (5 . 0 + X)))) I f.

?I Ti{IS EXAI'IPLE CONTAINS A SIMPLT INTERPQLATION FOLLOI{ED BY
REPLACEMENT ÛF Y.VALUFS BY THEIR OEVTATION FROM A MEAN ANO THE
CALCULATION OF SUIdS OF SQUARES

X Y Xl X2 Y1 \2 YMEAN SOUARES* * 1.0 È * * t *
* r 1.0 2.0 * * * r
* * 1.0 ?r0 7.0 * t *
* * 1r0 2.û 7,0 10.0 * *

116 * 1.0 e.0 7,0 10.0 r *
1.6 8.8 1,0 ?,Q 7.A 10.0 r *
1.6 8,8 1.0 ?.4 7.0 10.0 8.6 r
1.6 0.4 1.0 e.0 7.0 10.0 8.6 *
1,6 0.U 1,0 e.0 1,6 10.0 8.6 *
1n6 0oA 1'0 ?.0 1,6 1.1, 8'6 *
1.6 0.2 1.0 Z'0 1'6 1,1+ 8'6 1.56

*rUNDEFINED

t SËCTI0N 7 r,

?.
ldË C0ULD D0 THIS 3Y th'TRCIDUCING INTERMEDIATE RESISTANCES
RÊPRESENÏINO THE CO[4tsINATTONS TAKËN TWO AT A TIME;

REAL R1 , R?, R3 I R4 I R5 I TOTAL,
R3;TSERIES(O.6IR1)I T COMBINE R1 ANO O.ô T
R43=PARA(R5'1,3)r f COMBINE N0i.r }lITH 1.3 Z
R5:cPARA(25.0rR2)r 7, COMBINE Re AND ?5'0 |
TOTAL:-SERIÊS(R4'R9)I T * ÇOMBINE PARTIAL RESULTS T

TIOi,JEVERI THE INTËRMEt}IATE RESL]LTS ARE NOT REOUIRED AND t.tE COULO
t./RITE ONE AS$IENMgNT STAlEMËNT (BASICALLY * ABOVE) IN t,lHTCH THE
PARAI'IÊTERS ART FUNCTION CALLS (t.lHOSE PARAMETERS ARE TFIEMSËLVES
FUNCTI0f{ CALLS) i

T0lAL :=SER I ES (pARA (1 .5 r SERTES (0,6' R1)) r PARA (25.0' RZ)) t

** sEcTI0N I **

l*1*I

PROC SERIËS (REAL R1 ,RE) REAL'
7, RETURN$ EFFECTI'VE RË$TSTAIICE OF Rl IRE JOINED IN SERIÊS 'T

RETURN (R1 +RZ) I
ENDFROCI

PROC PARA (RËA L R1 I RE) RËAL,
U RËlURNS EFFECTIVE RESISlANCE OF R1 IRZ JOINED IN PARALLEL 'A

;[NOTÊ THAT $INçE PARA|'1ETER NÂI{83 ARE LOçAL TO THE PROCEDURE BOOY 16

7, i{E EAN USE THg SAME NAMÊS R1 AND RE UITHOUT AMBTGUIlY X
RÉTURN (1.41 (1.0/R1 + 1.0/R?)) I

EN0pR0Ct

l"* ? *H

PROC BINOMIAL (RÊAL X) REALI
I RETURNS (1 +x) **4 f
REAL XPLUSl, Y, LISE LOCAL RATHÉR TIIËN X FOR CLARITY Y

XPLUSIisX + 1'01
xPLUSI i *XPLUSl *XpLUSl I v, (1+X) **Z ',l

RETURN (XPLUSl *XPLU$1) I
ENOPRÛç'

fi*3*x
PR0C MAX (FEAI ArB) RÉALl
r RESULT IS THË MAXIMUII4 OF A AI,ID B Y,

RçTURN(0.5*(A + B + AB$(A-B)))r
ËNOPROC,

I,* 4 *7[

DATA OLOtsALI
REAL PrQrRl

Ef{DDATA
'

PROC FERF{UTE (),
REAL TEMP;

TEMP 3:rP I
P;=0f
Qi=Rl
ÊiTTEMPI

Êtf DPR0C t

?.* 5 *7,

FROç PERMUTE (REF REAL PIIIR)T
REAL TÊMPI

TEMP i FP T

VAL P;TQI
VA! GttRr
VAL Ê i TTEMPT

ENDPROCI

7i* 6)l

U SINCE f.lE IlISH T0 CALCULAIE F0R A NUMBF,R 0Ë vALUES 0r X AT FIXED
N VALLIES OF FIOIR, IT TS MORE ÊFFICIENT TO HAVE P,O,R AS DATA V

7: VARIABLES RATHER THAN PARAMETERS X

DATA COEFFICTENTSI
RËAL P,QIR,

ENDDATA'

PROC Y (REAL X) REAL,
Xi-X*Xf
FETURN(PrX*X + 0*X + R) I

ENDPRÛCI

PROC EVALUATE 0I
REAL RESULTI

Pie1,0l CI!=?.01 R3*3,01
RESULT:eY(.0,5) I
RESULT:EY(*10.2)l
RESULT:=Y(673"71r

F':=2.51 Qic-5.5, Rt=1 ,0;
RçSULT:=Y(0'1)r
RESULT:eY(7.71r
RISULT:rY(12,é)l

Z IN PRACTICE' 0F C0URSE' RESULT U0ULD 8Ê USE) BETI',EEN THE f
T VAR I OUS ASS I GI'iMÊNT STATEMÊNTS T
ENDPR9C,

H*7*i

xAx
PROC ùUAD (REAL AIBICI REF ÊEAL ROOl1 'ROOT2)',/. WE CCIULD REDUCE THE COÊFFICIENT PARAI{ÊTERS TO ThJO, NAMËLY BI
Z CI A, BUT THIS PROBAELV MAKES THE PARAl'lETERS TN THE CATLS MOR

T COMPLEX. I{E HAVE CIIOSEN TO RElUFN BOTH ROOTS VIA PARAMETERS
Z FOR SYMMÉTRY' CLEARLY blE COULD RETURN ONE AS A RESULT T
REAL ROOT,

B;s-g / (?.0*A),
R00T!:lS0RT(B*B a Ç/A)r
Y. IN PRAÇTICE I^JE I.lOULD NEED TO DEAL IilITH COMPLEX ROOTS N

VAL ROOTl IçE + ROOTr
VAL Rû01?lsB - R00Tl

ENDPROC T

y.B1
DATA COEFFICIENTSI

REAL AIB,ÇI
ENDI]ATA'

PROC OUAD (RËF REAL ROOT2) ÊEAL,
7" HERE TIE RETURN ONE ROOT AS A RESULT T
REAL ROOÏI COÊFFT

ç0EFF;=-6/ (2.0*e) t
T IIOTE THAT IN THIS CASE h|E CANNOT MODIFY B T
R00T::;SoRT(C0EFF*C0ËFF F C/A) I
VAL R00Te l=CflEFF Ç R00Tt
Y, ITIUST SET UP ROOT2 BEFORF THÉ RETURI'] 7.

RETURN(COEFF + ROOÏ) I
ÉNDPRQC,

r* sEclI0N 11 **

I*1*I
OAlA SY$lEMI

REAL MEA$UREDISgTPOINI, T CURREI{1 VALUES X
NE|.JERRIOLDËRRTVERYOLDERR, T LASl lHREE ERROR lERMS X
INÎERVALI Z TIME INTçRVAL T
CORREç1ION, X DELTA P T VALVE CHANGE I
KrLrM, I CONSTANTS f

ENDDATA'

PROC PROP () REAL,
RËTURN (K* (NE'I.JERR-OLDERR)) I

E NDPROC I

PROC PROPI NT () RÊAL,
RÉTURN(PROF(} + L*NEI.JERRIIIiITERVAL)I

ENDPROC,

PROç PROPINTDERIV () REALT
RETURN(PROP() + PROPINT ()

+ I*'I*(NEI,JERR.2,O*OLDËRR+VERYOLDERR) / INTERVAL),
ENDPROC'

PR0C DDC ()r
REAL TIFlË, "I LËSS THAN 1ç,0 FOR PROPORTIONAL CONTROL T1

r LESS THAN EO.O FOR PROPORTIONAL + IUTEGRAL Z
X LËSS TITAN 5O.O FOR PROPI INTEGRAL + DERIVATIVE T

Z SET CONSTANT$ AND I NPUT T4ÉASUREMÊI!T %

NE Il]E Rft ! =SETPO I NT.ùlEASURED'

I F TII'1Ë<1 O.O THËN
C0RRECTt0NIsPR0P ()l

ËLSEI F TIIqE<EOrO THEN
CORREçTIOI.JI.PROPINT () I

ELSETF TIMG<30.0 1I{EN
C0RRËçTI0Il;aPR0PINTDERIV () t

EL$E % SOI{Ë OTHËR ACTION T
Ef-lDr
U AS IT STANDS l,iE C0ULD l{AVË U$ED A C0NDtTI0NAL ExPRESSI0N: t,'lE y,

Z ASSUI.tE TIIAT I,IË MAY t,Ù I SH TO AOD OTHER STAlEMENlS FOR THË VARIOUS Z
r ACTI0NS'./,

0LDERRtTNEtTERRI
VERYOLDERR g:OLDÉRRI
x ËTc r,

EfiDPR0Cl

}; COI{TROLLËR FOR VALVÊ ADJUSTI-/IËNT T
PROç DOC (RËAL K, L,M,MEASUREÈ,SETPOINlI INTERVALI

FEF REAL OLDERR,VÊRYOLDERR) REALI
REAL NËI.JERR, CORRECTIONI

NEI,JERR: ESETPCI I NT.f*tEASUREDI
CORREC T I ON i ÊK* (i.IEilERF-OLD ERR }

+ L*NËi.JERR* I NTERVAL
+ M*(NEf{ERR-?.0*0LDERR+VERY0LDËRR) / INTERVALT

VAL VERYCItDËRR;llQLDERR;
VAL OLDËRR!*NEi*ERPI
RETUR}J(CORRECÏION) I

ËNDPROC'

PROC PLANTACTION () I
REAL TIMË T I AS ABOVE X

REAL OE LTA
'

I REOUI RED CHAN6E T
REAL MEASISETPT, INTER,OLDERR,VERYOLDERR, Z PLANl DATA Z

7, ILLUSlRATE CALL OF THE FINAL VERSION OF DDC Z

IF TIME<30.0 THEN
DE LTA; =D0C(0.9r lF TIME>=10.0 THEN 1,5 ELSE 0.0 ÊNDr

IF TTME>æ20.0 THËN O.é ELSE O.O ENDI
M E A S I S E T P T I I N T E R I O L D E R R

'
V E .R Y O L D E R R) I

ENDr
x ÉTc z

ENDPROC I

7.* ? *%

PROC STEP (REAL X) REALI
RETLiRN (I F X<O.O ÏItEN Û,0 ELSEI F X)O.O THEN 1.0 ELSE 0.5 ENO) I
I N0TE N0 E0UALITY ç0MpARIS0N Z

ENDPFOC i

Itc 3 *t;

PROC VOLUME (REAL DEPTH) REALI
RÊAL L0|.JCYL' I l,ILL C0NTAIt{ f0TAL V0LUME 0F L0t,lER CYLINDER SECTI0N Z

PI' X SFT PI ONCE Z
PI:-3.141591
LO'dCYL:=PI*3.0, 7, CALCULATE ONçE 3 RADIUS TS 1.0 Z
RETURN(IF DEPTH>6.0 THEN

L0t{cYL + pI*4r0*4,0*3.0 + PIr5.0*5,0*(DEPlfl-ô.0)
T CONTRIFUTIONS FROM 3 SECTIONS T.

E LSE I F DEPTH)3.0 TH EN

L0t.|lcYL + Pl*4,0*4.0*(DEPlH-5r0)
T, C0NTRIBUTI0NS FR0M 2 SECTI0NS Z

EL$E PI*DEPTH
I ONTY LOI.IÉR SECTION 1

END)I
ENDPROC,

%*4*%

PROC FABS (RËAL X) REAL'
U D0NrT CALL IT ABS; ITrS RÉSERVED I

RETURN(It X<Û.0 THÊN of Ét.SE X ElrD),
FHDPROC,

Lt 5 *14

PROC $ART (REAL A) REAL,
RËAL ÉPSI ii ACCURACY Z

CURX I T CURRENT APPROXIMATION T^

tlEXTX, I NÊXT APPR0XII'lAII0N f
EPSr:0.0011
CURXit!1.CI, 7, INITIAL 0UESS U

NÊXTX:T(CURX + AICUFX) * O.5I
I F ABS (NËXTX-ÇURX)
çURX;ËNEXTX'
NEXTXIE(CURX * AICURX) r 0.5r
IF ABS(NEXTX-CURX) < EPS THEN RËTURN(NEXTX) I ENDr
çURX;=NEXTX;
NEXTX:s(CURX + AlÇURX) * 0.51
It ABS(NËXTX-CURX) < EPS THEN RETURN(NEXTX)t ËN0t
çURXIgNEXTXI
l{EXTX;t rrr

X AND I.JE COULO çARRY ON BUT I.JI TH |.,iO GUARANTEÊ THAT ulE I^]OULO ALh]AYS X

r" CONVERGE IN THÊ NUMBËR OF STATEMTNT$ PROVIDËD, SO!UTION IMPOSSIBLE Z
f AT TH I5 STAGÊ - BUT READ 01'l f
ENDPROC,

** SECTI0N 12 *t

l* 1 *",1

U THÉRE ARE MANY POSSTBLE I,JAYS TO ICDE THIS Â\SI.JER /.
PROC ACTION (REAL PIO) REAL,
REAL RAITO, T TO HOLD P/O I

DIFF, N T0 HOLD P**2 ' 0**2 T,

RATTOI,.PIQ,
DIFFiTPTP - il*Q,

IF DIIF<O.C THEN
ERR0RACTI0I't () I
IF A>EO.O THEN

ALARMOI
RETURN(RATIO),

END,
G0T0 RECYCT

E!|Di
IF O>10,0 THEN

aUENCH () I
FÊCYC; RÊCYCLÊ(), ,A NOTE NO OIFFICULTY IN JUMPING INlO A I

r CONDITIONAL STATEMENT T
GHECKPI IF P<O.O THEN

ALARM0,
RETURN(DIFF),

END,
ÊLSE I F RATIO(i.O THËN GOTO CHECKPI
ELSE

CYCLEO,
IF O<O.O THËN

RATTO;=-RATIO' I }IEGATING O CAN ONLY AFFÊCT TIIE RATIO X

r lHE L0CAL 0 r.iltl BE LoST I
ENDr

EItD'
RETURN(RATIO)I
ENOPROC,

I*?*L

PROC CHÊCK () RËAL,
REAL XI Y, X FIRST COMPLÊX NUT\.18ÊR IS X + IY Z

UI i INTERMEDIATE VARIAELE /'
COUNT, I I'4ULTIPLTCATTON CCIUNTER X

C0UN T: a0,0 1

xi::5'0/15,01 Y:11?,0/13,Ûl f' M0DULUS UNITY Z

}{ SECOND çOMPLEX NUMBER t.,ILL BE 415 + 1.315 T
Z PROOUCT I.iTLL BÊ IORMED IN X + IY T

NEXT! U::30,8iX , 0.6*yl a NF||l REAL PARTI MUSÎ NoT C0R?UPT X YEl 7

Y I:Or6*X * O.E*YI T NEhJ IMAGTNARY PART T

x:;ui
COUNTi=COUNl + 1.OI Z ANOTHËR MULTI?LICATION Z

IF ABS(X*X + f*y - 1,0) < 0.0001 THEN G010 NEXTr ENDI
RETUFN (COUNT) I

ÊNOPÊOC,
"X NOTE THAT THI$ I'lETHOD OF COUNTING USING RÊALS IS NOT RECOMMENDEO %

} CONTINUEN ADDITION MAY 6IVË CUMULATIVE EFRORS 7.

** SECTt0li 13 **

L* 1 *7"

PROC SCRT (RËAL X) RËAL,
Z FÊTURNS POSITIVE ROOT OF A POSITTVË RÊAL T
RçAL OLDCUESS I NEI,.iGUESSI

0L0GUÊSS:Ê1.0,
ïRY: NEtdGUËSSt:(0LDGUËSS + x/ 0L0GUESS) * 0,5r

IF ABS(hEtl6UESS-0LncUËSS) < 0,0001 THEII RETURN(NÊbl6UESS)I ENDt
OLOGUESSiTNEh'6UESSI
60r0 ïRY I

ENFPROC,

PROç AUAD (INT A, B, C, REF REAL ROOTl , ROOTA) IIIT,
X TOR REAL ROOTS RESULT IS 1 ROOTS IN ROOTl ANO ROO12 X
Z FOR çOMPLEX CASE RESU!T IS O I REAL PART T[i ROOT1, IMAG tN ROOT? T
REAL D ISC I RÛOTI NEI,JBI

NEIiB;æ-B I2*AT 7, I.JIDENING TOR BOTH OPERANDS OF I Z
Z N0TÊ TtIAT t.JE cANN0T pERF0Rtl lHE M0DIFICATI0N IN If,iTEGER 6 7,

DISCi=NEtJB*NEl.,B - Ç/ At
ROOT:=5QRT(ABS OI$C) I T ENSURE POSITIVE PARAMETËR Z
IF 0ISC<0,0 TriËN

Z COMPLEX ROOTS Z
VAL R00T1 l=|'lEhBl
VAL R00T?l*R00Tr
RETURN(0)r

END,
Y. REAL CASE 7,

VAL ROOTl:=NE!IB+R OTI
VA L R00Tl ; =i!EtlB-R00T,
RETURN(1)I

TNDPROC'

l,* ? *7,

PROC FIBRAlIO () REALI
I NT U1 , U2 T TRAI'{S,
ÊËA L I'Jt:t.lRAT I 0, 0 LiTRAT I 0,

U1 : =U?; =1 r
OLORATIOT=1.0 T /, |'JCITE THAT THIS MUST BE SEPARATE FROM THE T,/, MULTIPLE ASSIGNMËNY TO U1 AND U2 7.

NEXTTERM: TRAltlS;=U?I
UZ:rUl + U?, '1 NEXT TERM U,N 7!

U1 t=TRANSt X PREVI0US TERM U,N-1 I
NEl.,RATI0z=U1 lUZi it t.JI0ENIliG y.

IF ABS(NEWNATIO-OLDRATIO)<O.OOO1 IHEII RETURN(NEWRATIO)I
END,
G0T0 NEXTTERf'l1

ENDPROC,
U AS T{ FURTHER ËXEÊCISE' EXTEND THIS PROCEDURE TO 6IVE THE VALUE OF 7,

T l'l F0n l^JHICH C0fJVERGËNCE IS ACHIFVEDT t.E. THE NUf4BER 0F ITERATI0NS f

X* 3 *7.

PROC INTE6ERDIVIDE (INT A,B) IIiTI
ï^ RETURNS THE OUOTIENT Ag/B T
REAL Q'

IF B=O THEN
T DTVIDE BY ZERO FAILURE I
T. SUIlABLE ERROR ACTION T

ENOI
Ql=A/Br
RETURN(INT(0 + IF Q<0'0 THEIi 0.5 ELSE -0.5 EN0))l

ENDPROC I

PROC },IGDULO (INT A,B) INTI
Z RElURNS THE RËMAI IiDER A MOD B I

RETURN(A Ç INTEGERDIVI0E(A,B) * I)r
ENDPROC,

X IT IS POSSIBLF TO I^JRITE THESÊ h'ITHOUT USIHG REAL ARITHMETIC X
Y, THOUCH TFEY |.lILL THEN BE RATHER SLOhl IN SOI'18 CASES I
PROC IIITE6ERDIVIDE (INT A,B) II{TI
I NT C0tlNT r S l6N I

IF B-O THEII
Z PIVIOE BY ZERO FAILURE T
7^ SUITABLË ERROR ACTION 1T

ENO,
SIqN 3?I F A*B<O THEN -] ELSE +1 ENDI

7, TO AVOID POSSIBLE OVERFLOtd UE çOULD AC.}tIEVE THIS BY TESTS Z
A;=ABS Af
Bi=ABS Br
C 0U i''lT : g0 I

L: 1F Â)=g THEN
C0UNTTcC0UNT+1r
A3eg-6t
60T0 Lr

ENDI
RETt-JRll (C0UNT*S I Gl',1) I

ENOPROC,

i4 AND hJç COULD çO}lBINE THÊ l|.jO FUNCTIONS Z
T}ROC IN E6ËROIVT|)E (INl AI BI REF INT REMAINDÉR) INTI
I IiT COUNT, S IGNA, S I GNB I

IF B=O TIIEN
Z DIVIDE BY ZERO FAILUPE iA

?; SUITASLL ÊRROR ACTION Y"

END,
SIGNAI=IF A<O TIiEN .1 ELSE +1 END'
SIGNB:=(lF B<C THEN r'l ÊLSE +1 END) * SIGNA,

U BRACKËTS F0R CLARITY ! GTVES Sl6N 0F 0U0TlEllT 7t

A;=AtsS Al
S; =ABS B t
çCIUNT: =0 I

L! IF A)=B lHEN
C0UNT: =C0UNT+1 I
6g*A_Bt
GOTO LI

END'
VAf REMAIN0ERi=A * SIGNA,
R Ë T LI R I'I (C O U N T * S I G N B) ,

ÉN0PR0Ct

7(* 4 *I

PR0C R0Ul'rDl0INTËçER (REAL x) INTr
REAL TE$Tr
INl VALUÊ,

VALUErn0r
TI X<O.O THEN

TEST: =*0.5,
TRYNES! IË X>ETEST THEN RETURI{(VALUE), ENO,

VALUEITvALUÊ-1 I
TEST:tTEST-1.01
60T0 TRYNE0I

ENDI

TÊSTt=0.51
TRYP0S: It X<TËST TtIEN RETURN(VALUE)l El'10,

VALUEi.VALUE+1,
TEST t*TEST+1 ,0r
6OTO TRYPOS'

ENDPROC
'Z N01E THAT ANY 0VÉRFL0l.l C0NDITI0N hIILL BE DETÊCTE0 BY THÊ 0VERFL0b/ X

X IN lHE INTEGER STEPPING OF VALUE N
X TI{Ë RÊPEATED ADDITTON/$UgTRACTION OF 1.0 MAY LEAO TO CUI'lULATIVE, Z
i ERR0RST L06lCALlY A 6000 ÊxERCISË ' IN PRACTICE N0T REC0MMÊNDED Z

** SECTI0N 14 *i

'A* 1*T

OAÏA COORDSI
ARRAY (3) REAL POINTI T XTYIT COARDINATES OF A POINT T

EN D DATA,

PROC DI$T (REË ARRAY REAL PLACË) REAL'
Z DELTVERS DISTÂNçE OF (XIY'Z) FROM (O'O'O) 7"

RÊAL X,Y,7I
X!gPLACE(1)T
Y:=PLACÉ(?)I
Zi,P!AÇE(3)I U FIND COORDIfiiATES ONCE ONLY I.
RETURN (S0RT(X*X + Y*Y + 7.*Z))l-I ASSUME SOUARE ROOT FUNCTION T

ENDPROC,

X ILLUSTRATICN C}F CALL i R:EDIST(POINT) r Z

I*7*I
PROÇ },!EANANDDEV (REF ARRAY REAL A, RÊF REAL |\,IÉANI DÊV) I
Y^ RETUFNS MEAN AND STANDARD DEVIATION OF ËLEMENTS OF A X
INT N, X NU}4BER OF ËLEMENTS T,r I, X COUNTER U
REAL SUI'4T Y. SUI"I OF ETEMENTS Y,

CUR, T CURRENT ËLEMËNT VALUE T
suMsa t T, su|,! 0F sQuAREs I

SUM;:5UMS0:=0.01
N:=LENGTH A,
l:=1 ;

L; IF I(*N THEI.I
CURi!A(I)r
SUM: eSUM + CURT
SUMSO:BSUM$O + CUR*CUR'
I:gl+1r
6OTO L,

ENOI
X NOTF THAT NULL ARRAY (IIl!O) NOT CATERED FOR'I
VA[1.4EAN:çSUM/Nr
VAL DEViTSART(SUMS0/N-MEAN*MËAN) I

ENDPROC'

l"* 3 *H

PROC PROD (REF ARRAY (I) REAL AIBIÇ)T
X ASSUME A IS II{XNI B IS NXIrl. C IS AN MXM ARRAY TO FORM PRODUCT AB {
i, ASSUME N0N-liULL ARRAYS f
INT IrJrK, I COUNTERS I
REAL SUMl N F0RM PR0DUCT sUM f

1 ; =1 rNÊXI: IF I(cLFNGTH C THËN
J I s1 I

NEXJI IT J(gLENGTH C THËN
SUM r =0.0 r
K I ç1 I

NÊXKI IF K(cLENGTH B ÎHÊN
SUt{:=SUM + A(IrK)*B(l(rJ)r
K: =K+1 r
6OTO NEXK'

ENO'
C(LJ):=SUMr
J:rJ+1t
GOTO NEXJ,

ENDI
l:cI+11
6OTO NEX I I

ENO'
ENOPROC,

"A* 4 *7"

DAÏA TAB LES,
ARRAY (1()O) REAL XIYI

ENDDATAI

PROC INIlIALISE ()I
tl{ï lt
REAL XVAL'

z sErs up TABIE 0t Y F0R x IN (0,1,10.0) AT 0.1 INTERvALS z
Itç11

NEXT! IF I(=1OO THEN
X(I);=XVALi=[*0.1r
Y(I):*F(XVALTI 7. F TS TIIE REOUIRED FUNCTION T
1;:l+11
GOTO NEXTI

END,
ËNDPROC'

PRNC INlERFSLATF (REAL XX) REALI
T, LINEAR Ir'ITERP0LATI0N F0R XXr RETURNS C0RFESP0NDING Y VALUE Z
INT II

IF XX<OI1 TIIËN T OUT OF RANGE ERROR ACTION Z ÉND;
IF xX>10,0 THEN "l 0UT 0F ÊAtlGE ERR0F{ ACTI0N Z ENDr
I : =1 ;I'lEXIi IF I<100 IHEN

IF Xx=X(I) THEN RETTJRN(Y(I))r UEXACT P0INT 1(Ert0,
IF XX<X11+1) THENg INTERPOTATE U

RETURN((Y(I+1)-Y(I))*(XX-X(I))*10r0 + Y(I))l
END,
I!=I+11
60T0 NEX L '

ËND,
I I=1r.r0 AND XX MUST BE X(100) y,

RETURN(Y(1OO))I
ENDPROC,

** SECTI0N 16 **

I*1*I

PROC $ETDATE () I
U EIVTERED AT MIDNIGHT f;VËRY DAY T

DAy:oDAy+1r
IF FAY>DINM(MONTH) THÊN

DAy : =1 , 7, START NEr.t t"tçNTH y,

M0NTH:lrM0NTH+1 I
I F MÛI'JTH>12 THÊN

YEARI=YEAR+1
'

U NEI,J YËAR T
MCINTii: =1 r

ENDI
EI'ID,

ENOPROCI

DATA CALÉNDAR'
ARRAY (12) TNT DII'iM3I

7, C0NTAINS NUl''18ÉR 0F DAYS tN EACH M0NTri i[
(31 t?8,J1 r50r31 '30r31,31 r30r31,30,51) I

ENDDATAI

DATA OATEI
I NT pAY I i,t0l{Tfl, YEARr

ENOOATA,

** SECTI0N 17 **

il,* 1 *I
LET EPS!0 ' 001 r

PROC OUAO (REAL A,BIC, X COEFFICIENTS ?(

REF RËAL ROOTl , ROOTE Ë ROOTS T F REALI REAL AND INAG T
I PARTS IF COMPLEX T) INTI

X RESUIT t S N0N-ZER0 I F RC0TS ARÊ ç0MPLEX f
REAL NFt.lB!=-B/(A*2.0), ROOl,

SQI=NEtr|B*NËtJB Ç ClAt
BLOCK
REAL P0SS03=ABS S8' 0LDçUESSre1.0r NÊfdGUFSStr(P0SS0+1.0)*0.51

L! IF AFS(0LDGUESS-l'lEl.JçUESS)>EPS*NE!.IGUESS THEN
0LCGUESSSeNEt{GUESSI
NEhlGUESSi=(NEr,'GUES$ + p0SS0/NEr,'GUESS)*0.5t
GOTO LI

ENSI
R00T;=llElrl6UESSr

ENOELOCKI
r CLËARLY THË INNER BLCICK IS NOT ESSËNTTAL BUT TT DOES CORDON U

T OTF THE gVALUATICIN OF THE ROOT 7,

I F S0<0.0 lHgN
'A COMPLEX ROOlS T
VAL ROOTl IgNEl.JBT
VAL ROOT? InROOTI
RETURN(1),

ENDI
VAL ROOTl IgNEI,}B+ROOT,
VAL R00TZ l=NEl.JB-R0011
RETURI't(0)t

ENÊPROCT

H*7*Y

PROC SMOOTH (RËF ARRAY REAL F) T

INT I;FA, I COUNTER, FIRST POINT NOT SMOOTHED E

LEI,iIEI.ENGTH F 1 T çALCULATE ONCE TO AVOI D ON EAçI{ ITERATION Z
REAL T2ieF(1), F3:!!F(2IT ?{ RËMEMBER UNSMOOTHED VALUES ,A

NEXTELI tF I<LEN TTIEI'I
BLOCK
REAL F1 I.F?,

F?:=F3l
F3:=.F(I+1)l
X NOI.{ HAVE THREE UNSMOOTIIÉD VALUES TO FORM NgI.I F (I) T
F(I) !s(F1+t2+F3) 15,0r

ENDBLOCKI
I:cI+11
60T0 NEXTEL'

END,
ENDPROC;

l,* 3 *%

PROC MËANANDDEV (REF ARRAY RÊAL AI REF REAL NEANI OÉV) I
R EA L SUl'l I TSUMS0 : g0.01
INT LENs;LEN6TIt AI

IF LËNTO THÉN
Z SUIlAELE ACTION

'
AVOID DIVISION BY ZERO T

END,
BLOCK
INT l;e1r I COUNTER I

NEXTË L:
IF I<:LÊI{ THEN

BLOCK
REAL CUR:eA(I)r Z CURRËNT ELEMENT ii

SUÈ{; =SUil + CUR I
SUf{SQ:aSUMSO + CUR*cUR,

ENDBL0CKT
I tçI+11
60T0 NEXTELT

ENOI
ENDÊLOCKI
VAL MEAN;;SUM/ LENI
VAL DEV!!tSQRT(SUMSQ/LËN - MÊAN*UEAN),
T AsSUMÊ, E,xISTENCç OF SQUARE ROOT pRocEDURE T

ENDPROC'

I*4*L
PROc PROD (REF ARRAY (,) RËAL AItsIC)T
INT R0tl!sî r 7 R0tl COUNTER ï.

LEN;gLENTTH ÇT
NEXTROI./:

IF ROI,I<3LEN THEN
BLOCK
I NT COL; =1 I .I COLUMN COUNlER X

NEXTCOL;
TF COL<TIEN T}IEN

BLOCK
REAL SUM;=Q.91 /, ACCUMULAT0R U

I NÏ K: 11 I T çOUNTER Z
LBiSLENGTH B,

t.lEXTPR0Dt IF K(rLB THEN
SUMIæSUH + A(ROhl,K)rB(KICOL)I
KtrK+1,
GOTO NEXTPROD'

ENDI
C(R0bJ, C0L) lsSUMr

EN0BL0CKI
C0L:eC0L+1 t
G0T0 NExlC0Lt
ENO,

ÊNOBLOCKI
GOTO NEXTROt,JI

ENDI
ENDPROC'

l*5*l

PR0C P0l,lER (RËAL A, INT N) REALT
r RËTURNS A 1O THE NTH POIdER U
IT N<O THEN

Rle1.0/At
;r1 ; =-N I
?L POVJER OF RECIPROCAL IN NEGATTVE INDEX CAS€ Z

EN0r
RETURI.,l (IF N=0 THEN 1.0 ELSÊIF Nr1 THEN A

ELSE POl/JER(A*AINI/E)iPOl.tER(A,N MOO Z)
ÉND) I

I DECOMPOSËS INTO A PRODUCl OF 1 OR A TII.{ËS A PO!,IER OF A X
r SAUARED I RÊPËAT RECURSIVELY T

ENDPROC
'

7ô* 6 *'A

7, METHOD 1 I NON-RECURSIVE,A

DATA çARDDATAl
'ARRAY (E) INT BUFr /" ASSUME (=8 DIcITS IN AN INTEcËR t

ARRAY (1 0) t NT CDC00ÊS1 ! ' (51 2,?56,128.64 t3? t16,E,4,?,11 r
ENDOATAI

PROC CARDCOOEl (INT X)I
% THE PROBIEI'I IS THAT SUCCESSIVE REMAINDERS 6TVE THÊ DI6IT CODES Z
ï IN REVERSË OROER SO IIE MUST STORE THEM lEMPORARTLY IN AN ARRAY U
7{ BUF BIG ENOUGH FOR TIIE LARGEST POSSIBLE NUMBER OF DIGIlS IN AN Z
r INlEGER - HENCE MACIIIHE DEPÉNOçNT T

INT YI=1I
L;

BUF(Y) isCDC00ESl (X M0D 10 + 1) I
I F X>9 THEN

xisxz/1at
Y:.Y+11
GOTO LI

ÊND'
L1s

CAROCOLUMN(BUF(Y))I
Y: =Y-1 I
IF Y#O THEN GOTO L1I ENDI

ENDPROCI

Z METHOD ? t RECURSIVE U

% THIS I{ETHOD IS MORË COMPACT ALTHOUGH IT USËS MORE SlACK (tsUT NOl X

Z AN ABSURD AMOUNT SINCE CARDCOOgA IS ONLY CALLED ONCE FOR çACI{ Z
Z Dl6tT) t IT ALS0 HAS N0 ARRAY t{0RKSPACE 0THÉR THAN A L00K-UP I
7, TABLE U$80 IN A READ-0NLY MANNER 3 l1 IS THEREF0RË RE-ENTRANT f
DATA CARDDATA2,

ARRAY (10) INT CDC00ESe;!!(512t256t12Et64,3?,16,8,4,2,1) r
ENODATA,

PROC CARDCODE2 (INT X),
IF X>9 TI{EN CARDCODE?(XI /10'I I ENO'
çARDC0LUMN(CDc0DESe(x MoD 10 + 1)),

ÉNDPROC '

** SECTI0N 18 tr

ï*1*L
PROC ORDER (RE F ARRAY REAL A),
INT I:e1, LFN:I!ENGTH A,

tllllLE l<LEN D0
BLCCX
FEF REAL MIN:=A(I)r
INT J;=l+1,

t,{HILE J(=LEN DO

lF A(J)<MIN THEN MIN!rA(J)t ENDI
J:=J+11

REP;
BLOCK
REAL TEMp:=A(l)r

A(I):=MTN'
VAL MIUi=TEI.IP;

ENDBLOCXI
ENDBLOCKI
l;-I+1r

REP'
EI.IDPROC,

ï*2*A
Z ASSUI(E A,B IN A DATA BRICK, THE REOUIRED FUNCTION IS X
I PÈOC T (REAL X) REAL Z,

T ASSUME F(A) I F(8) DTFFER IN SI6N T
u AssuÀ,rE A<B r,

FROC SI6N (REAL X) INT'
REAL Qs=F(X);

RETURN(IF 0<0.0 THEN r'l ELSEIF 0>0.C THEN +1 ELSE 0 ÊND)r
ENDPROC'

PROC BISECT () REAL,
REAL 80T;-ArT0Pl=E;
I NT T0FSIGN ::S IGI'l (T0P) I

hlfi I LE T0P-B0T)0,01 D0
BLOCX
REAL f'lI D :=(B0T+T0P)r0. 5t
I NT Ml0S I GN;=S IGff (M I D) I

IT MIDSI6NgO THEN RETTJRN (I,IIO) T I ExACT ROcT U
END;
T F MIDSIGI{#TOPSI6N TIIEN

r ROOT II{ (MI D, TOP) 'A

B0T:=MIDr
ELSE

r RÛc]T IN (EOT,ilID) H

T0P:=l'lIDr
ÊND,

E IIO B LOC K;
REP,
T R00r N0lll lN (B0T'T0P) A RANGE LESS THAN 0,01r REfURN AVERAGE Z
RETURN ((BOT+TOP) rO.5) r

ENDPROC'

xr5*z
PROC TFANSIENl ()I
REAL OLDSCAN:=SCAN(), T INITIAL READING T

NE\,ISCANI
DELAY(1C), I TI[,IE DELAY BETIIEEN SUCCESSIVE READTNGS z

r LJI LL DEPEND UPON IIISTRU14ÊNT CHARACTERISTICS I
NE!iSCANs=SCAN(); X NEXT READING I
I.ITII LÊ ABS (NEt{SCAN'OLDSCAN)>O.OOItABS ITEHSCAN DO

DÊLAV(10)l
0L0SCAN 3=1*1E1.1SCAN,
NEtISCAN:=SCAN()r

RÊP'
ENDPROCI

t!t SECTIûl'l 19 *t

Z* 1r'1,

FROC PROD (REF ARRAY (,) REAL AIBIC)I
t0R Is=1 T0 LENGTH C D0

FOR J:=1 TO LENGTH C DO

RÊAL SUM;=Q.91
FOR K!r1 TO LENGTH 8 OO

SUMi-SUM + A(lrK)*B(KrJ)r
REPr
C(l,J) l-SUMr

REP,
REPI

ENDPROCI

lrZ*l

PROC MEANANODEV (REF ARRAY REAL A, REF REAL HEAN,DEV)I
REAL SUt't ;=SUMSQ :c0.0r
ThT LEN:=LENGTH AI

I F LEN=O THEN X SUTTABLE ACTION Z ÉNDI
FOR I:=1 TO LEN DO

REAL CUR:çA(I)I
SUM: =SLIM + CURT
SUMSQ: =SUMSA + CURiCUR

'REP,
VAL l.tËAli !=SUM/ LErlr
VAL 0EV::TSQRT(SUMSO/LEl,l a MEANTMÉAN) t

ENDPROC,

l*3*X

PROC MËAN (RE F ARRAY REAL A) REALI
R EA L SUt4: r0.0, MU,
INT LEN:=LENGTH A,

I F LÊN=O THEN 1 SUITABLE ACTION T ENDI
F0R I:=1 10 LËN 00

SUMI=SUM + A(I),
REPI
MU!=SUri/LEN,
F0R I:=1 10 LEN D0

A(I)i=A(l)-MUl
REP,
RÉTURN(I.,IU)'

ENDPROCi

I*4*l

PROC SMOOlH (REF ARRAY REAL F),
REAL tZi=F(1), F3l:F(Z)r
T TIPDATÊS U5I NG UNSI'IOOTHED VALUES lHROUGHOUT Z

FOR T::? TO LENGÎH F I 1 DO
i1 END POINTS NOT UPDATEO Z

REAL çlIzF?T
F?teF3 t
t3t=Ffi+1)l
F(l)::!(F1+FZ+F5) | 3,Qt

REFI
Ë.NDPROC,

I*5*X

LET SIZEeI OO T I SIZÊ OF TAtsLËS N

DATA TAi'LESI
ARRAY (SIZE) INT INDEXI
ARRAY (SIZE) REAL VALUEI

Z ARRAYS ASSUMTD SET UP BY SOME PROçESS Z
ENDDATA,

PROC FIND (INT N) REALI
Z RETURNS RÉAL VATUE CORRÉSPONOING TO INOEX N T
FnR Il=1 T0 SIZE 00

TF INDEX(I)=N THEN RETURN(VALUE(I))I ENO,
REF,
r SUITABLE AçTION FOR MEANINGLESS INDEX U./. NOTE THAT I.IE HAVE TO PROVIOÊ A RESULT FOR THI S CASE T
RETURIT(0.0)r

ENDPROC,

7l* 6 *7.

LÉ1 LA=1OOI X LENGlH OF MÊSSAGE ARRAYS T

DATA MESSAGESI
ARRAY (LA) REAL INPUTT0UTPIJfI

ENDDATA,

PR0C PR0CÊSSTAPE ()r
7, RÊAD NUMBER OF INTEGERS ON lAPE FOR LOOP CONlROL T
TO IREAD() DO

INT MARKi=IRËA0()t I READ NEXT INTEGER f INSTRUCTI0NT f
I F 14ARKÊ1 THEN

ARRAYIN(INPUT),
Ë LSE I F MARK=2 THEN

ARRAYOUT (CIUTPUT) I
Ê LSE I F MARK*3 THEN

I'{EAN (OiJTPUT) i T RESULl LOST T
ELSEI I MARX=4 THËN

FOR Iigl TO LA DO

OUTPUT(t);E(INPUT(I) - 32.0 | I 1.Er
REPr

E LSE I F MARKI:5 THEN
SMOOTH(INPUl),

Ë L5E
T" SUITAELÊ ACTION FOR UNDEFINED INTÉ6ER VALUE T

END,
REPI

ENDPROE,

*r SÊCTt0N ?û **

L* 1*o/*

pR0c sÊLEclARtlH (REAL ArBr
r CHOICE ACTION UxlsuMr
X ? PRODUCT 1,

r 3 DIFFERENCE U

x 4 auoTlÊNl '1,I 9 AVERAGE T.

Z 6 GREATER iÉ

7" 7 LESSÉR Z

INT CHOICF) REAL'

SI.I I TCH CHO I CE OF ADD I MULT I StJB I D I V
'

AV I GR I LESSI
I ERROR ACTION IF ANY Z
RETUnU(0,0)r

ADDi RElURN(A+B)I
MULTi RETURN (A*g) I
$UB: RETURN(A-B) I
DTV; RËTURN(A/B) I
AVs RETURN((1+B)*0.5)r
GR: RETURN (I F Â>B THEN A ELSE B END) I
LESST RETURN (I F A<B THEN A ÊLSE B ÉND) I,A NOTE THAT THE TRANSFERS FROII ÊACH SEOUENCE ARE IN THE RETURNS T
ENDPROC

'

** SECTION ?Z **

.ï* 1*7,,

DECIi.I,\L BINARY
6 BIN 110

?7 BIN 11011
84 BIN 1010100

317 BtN 100111101

** SECTI0N e3 **

7"* 1 *T

OCTAL
ocr 6
ocr 53
ocr 124
0CT t475

HEXA0ECllfAf
HEX 6
HEX 1B
HEX 54
HEX 130
HEX 848?.120 BrN 1000t1001000 ocT 4110

32b7? BIr'l 111111110100101 ocÏ 776t 5 HEx ?FA5

A

B

c
D

E

F

TJ

VALID
NO VALT O REAL
NO B T NAÊY SCÂ LÉ
VALID
Nù VALID REAL
VALID
OUT OF RAI{GË
VALID
IilVALID SCALE
ËXPONENT AND SCALE I.NVERTED

H)
I)
J)

H* Z *7,

PROC SCALETOFRÀC (REAL REAOING, Z ABSOLUTË READING Z
SCALE r FULL-$CALE VALUE I

) tRACr
RETURN (FRAC (READTNG/SCALE)) I

ËNDPROCI

PRCIC FRACTOAtsSVAL (FRAC RÊADING, T TRACTION RÊADTNG T
REAL SCALE f FULL-SCALÊ VALUE 1

) REALI
RETURN (RÉAD I N6*SCALE) I

Z REAOIN6 I^IIDËNED TO REAL X
ENDPROC

'

** SECTI0N 27 **

ï1:{
Z lN THE PACKING '',lE t/ILL KFEp THE INTEGER VALUE IN lHE T0P 0F lHE I
7; WORD AND USÉ ARITHMETIC SHTFTS TO ACCESS ITI IN THIS t.JAY T}IE ST6N X
? IS ORGANISED AUTOMATICATTV Z

LËT MAXREAD=100r f DATA READINGS 7,

DATA P LANTARRAY,
ARRAY (MAXREAD) INT PLANTINF,

X EAC}i INTEGER HAS (STARlTNG FROM lHE BOlTOM OF THE I'IORD) U
?; BIÎS 1r713: FLAGS ÂrBrC Z
f BtTS 4-5 : SEQUEI'5CE N0. "A

Z B ITS 6-E ; STATUT VAIUE f
7; BIT$ 9-T0Pl INlÉGER VALUE (SIGNED) Z

ENDDATA,

PROC UPDAlEVALUÉ (INT INDEX,NE}I)I
PLANTINT (INDËX) :ÊPLANTINF(INDEX) LAND HEX FF LOR (NEbI SLA E) I

ENDT'ROC,

PRgC READVALUE (INT INDEX) INlI
RETURN(PLANlINF(INDEX) SRA 8) I

ÊNDPROE'

PR0C UFDATESTATUS (INT INDEX'NEt,l)I
PIAI.ITINF(INDEX) !ËPLANlINF(tNDEX) LAND NOT OCT 340 LOR(NE}I SLL 5)I

ENDPROC'

PROC READSTATU9 (INT TNDEX) INT,
RËTURN(PLANlINF(II.IDEX) SRL 5 LAND 7) T

ENDPROE'

PROC UFDATESEAUENCE (INT IIIDEX, NEI./) I
PLANTINF(INDEX) I=PLANTINF(INOEX) LANO NOT BtN 11OOO LOR(NÊl{ SLL 3)I

ENOPROC,

PROC READSFOUÊNCE (INT II'I96X) INTI
RETURN(PLANTINF(INDEX) SRL 3 LAND 3) I

ENDPROC'

PR0C UPDATEA (INT Il{DEXTNELJ)r
PLANTINF(INOEX) IÈPLANTINF(INDEX) LANO NOT 1 LOR NEI./I

ENDPROC
'

PROC READA (INT INDEX) II.I1,
RETURN(PLANlINF(INDEX) LANO 1) I

ËNDPROCI

PROC UPDATEB (INT INDEX' NEt.l)
'PLAI{TINF(INDEX):*PLANTINF(INDEX) LAND NOT FTN 1O LOR NELJ $uI. .I

,1

ENDPROC,

PROC REAOB ([NT INDEX} INTI
RETURN(PLANlINF(TNDEX) SRL 1 LAND 1)T

ENOPROC'

FR0C UPDATÈC (tNT INDËXrNÊtl)l
PLANTINF(INDÊX) !ÊPLANTINF(INDEX) LAND NOT BIN 1OO LOR NEt.J SLL 7T

Et'lpPR0c,

PROC READC (INT INDEX) TNT,
RÉTURN(PLANTINF(INDEX) SRL 2 LAND 1)r

EtrDPR0Ct

LEi 5ETT1
'

PR0C $CAN ()r
F0R I:=1.T0 UAXREAD Dc

II READSEAUENCE(I)=3 THFN
BLOCK
ITiT INTVALIeREADVALUE(I) I

lF INTVAL(-90 0R INTVAL>90 THEN
'A ALARM C0ÀiD lTI0l'l DETECTE0 Z
X APPROPR I ATE ACT I ON Y.

E I'I D,
ENOBLOCKI

EliDl
BLCICX
INT Ai.READA(I)' BITREAOB(I), CTIREADC(I),

IF RÊADSTATUS(I) LAI'.iD 1gO THEN,A STATUS EVEN T,

IF AsSET AND BeSET OR A#SET AND B#SET AND C#SET lHEN
7, ALARI-I CONDITTON

'(U SUITABLÊ ACTION X

ÊllD,
ELSE

r STATUS ODD T
Z NOTE THAT Ç=SET IS ALARI'I REGARDLESS OF A.B %

IF CçSET 0R AfSÊT AND B=SET THEN
X ALAPM CONDITTON T
T SUITABLE ACTION Z

SND'
END'

ENDBLOCKT
REP,

ENDPROC I

** SECTI0N 29 *t

I*1*Y
U DDC EXAMPLE USINC RECORD STRUCTURES T

i\4ODË LOOPRÉCORD (

I N1 MSMÏ I I MFASUREO VALIJE U

SETPT, X SETPOINT X

LASlMI T PREVIOUS MEASUREMENT 7.

LASTSP, T. PREVI0US SETP0IfIT Z
VPr X VALVE P0SITION Z

BYTE H IALM, U H IGH ALARM VALUE Y.

LOALI'l I I LOI.J ALARM VALUE N

KPI X PROPORTIOI'IAL CONSlANT I,
KI I U INTÊGRAL CONSTANT Z

REF LOOPR€CORD CASC '/" RECORO bJHOSE SETPOINT IS TO B€ I
Z ADJUSTED ' CASCA0E Z

)r

CIATA CONTRCILOATAI
r PLANT INFORMAlION T

ARRAY (100) L00PREC0RD PLANTIe((0r0r0,0r0r0'0r0r0rNULL) (100))r
L00FREC0RD NUf Ltr(0r0'0r0r0r0r0'0r0'NULL) r X DUMttlY I

ENDDATAI

PR0C CcNTR0L ()r
X THIS PROCËDURE DRIVES TIIE PROCESSING OF THE RECOROS X
STARl:

FOR I:11 T0 100 00
DDC (pLAfiT(I)) I 7 D0C 0N EACH L00P Z
DELAY(10)I Z 1O MILLISEC DELAY U

REP'
DELAY (4000) I Z 4 SECONDS PAUSE f
GOTO START, ,A DDC AGAIN Z

Ëli0PÊ0Ct

PROC DDç (RÊF LOOPRECORD LOOP)I
7, PERFORMS DDC ON SINGIE LOOP Z

x c0r'{FuTÊ cHAN6Ë IN VALVE p0SITI0N X

INT ERR::tL00F.MSFlT F L00P.SETFTT
DÊLVtÉL00P.Kl*[RR +

Ln0P'KP*(ERR' (L00P.LASTÈ{TL00P.LASTSP)),

r UFDATÉ RÉçORD Z
LOOP r LASTM !' LOOP. MSMTT
LOOP. LA$TSP I =LOOP. SETFTI

X ADJUSl SETPOINT IF CASçADEI CITIiERI^JI$E VALVF 1(

TF LOOP.CASCI#: NULL TIIËN
L00p.cAsc,sETpT:t3l0CIp.cAsc.sÊTp1 + DELVI

ËLSË
LOOP.VP;*LOOP'VP + DELVI

Ei,IDT
FNDPROC'

"Â* ? *l
LET MsOI
LET F=1t

MODE PERSON (REF ARRAY BYTE }.IAME I
BYTE SEXIAGEI
RË F PERSON SPOUSE,

FATIIER,
FIRSTçIiILD, Z I,E. THE çLDEST IN A çHAIN 1(

I.iEXTSIBLIN6 T I.E. THE FIRST YOUNGER ONE T
)l

OATA PEOPLEI
p Ê R S 0 N N 0 B 0 0 Y ; c (" ' ' F r 0 r N 0 I 0 D Y '

N 0 B 0 D Y r N 0 B 0 D Y , N 0 B 0 D Y) I
Z DUMMY RECORD FOR TERMINATIN6 LINKÊO CHAINS Z

ARRAY (E8) REF ARRAY BYTE RELATIVÊ:-(
r THIS IS AN ARRAY OF MESSAGES T

"FATHER'I
"l'40THER'r
"6RANDFATHÊR"r
"GRAN0M0THER'r
'FATHER-IN-LAlnjo t
"M0THER-INrlA[,i',.ELDËR BROTHËRO,.ELDER SISTER',
"YOUN'SER BROTHER'I
'YOUNGER SISTER"
'soN" t.DAUGHTERT.

'GRANDS0N"f
'GRANDCAUGilTER",
'SCIN-lN-LAl.J"
"DAUGHTÊR-IN-LAIJ'r
.UNCLEN,

"AUNT'o
"NEPHEtJ"roNIECE"
" , 1' N01 U$ED f
"HUSBAND',nfiIFEir
"NOT RELAlED'I
'IDENTITY'I
"ILL DEFTNED'I
"c0uslN'(e) 'a I0 ALL0bi F0R B0TH sÊxEs u

)t
ENDDATAI

PROC OUTREL (REF PERSON AI B) I
r OUTPUTS RELATICINSHTP OF B TO A 1
Y. WE, ASSUME SIMPLE I,IOHO6AMOUS LÉGITIMATE SYSTEM Z

lIT,RT (RE LATI VE (RE LATI ON (A I B))) I
ENDPROC,

PROC RELATION (RËF PERSON A'B) INT'
I RËSULT IS INDEX INlO THE ARRAY RÊLATIVË U

IF AiF:NOBODY OR B:;INOBODY TITEN RETURN(26) I ENO,
IF Ar=;B Tt{EN RETUnN(?5)r ENDr
RETURN(B.SEX + REL(A,B))I
Y. PASS PARAMËTFRS THROUGH TO SEX LÊSS PROCEDURE Z

ENDPROC,

PROC RËL (RTT PÊRSON AIB) INT,
7" RESULT IS INDEX TO BASTC RELATIONSHIP NEEDS MOOTFTCATION BY SEX T,

IF A.SPOUSE;=IB THEN RETUNN(?2)I ENOI
BLOCK
REF PERSON t}ADAiSA.FATHÊRI

llUl'14; SDADA. SP0USE t
DADB!EB.FATHER,
MUMB: IDADB. SPOUSE I

? PARENTS U

IF DADA:É!B OR DADA.SPOUSEi-:B THEN
RETURN(1)I

END'
Z CHILDREN 1I

IF DADE::iA OR DADB.SPOUSE!I!A THEN
RETURN(11)I

ENO,
ii I N.LAflS I

BLOCK
REF PERSON IINLAs=4,$POUSE.FATHER'

TF FINLA:SiB OR FTNLA.SPOUSÊI:;B THEN
RËTURN(5)I

END,
ENDBLOCKI
BLOCK
REF PËRS0N FINLBI=B.SP0USE,FATHER,

IF FINLB:g:A OR FINLB.SPOUSEIS:A THEN
RETURN(15)I

END,
ËN08L0CKr
BLOCK
REF PERSON 6FDA:=DADATFATHFR,

GFMAiBI,IUMA,FATHER,
GFDB;EDADB.FATI{ER,
GFt4Bi=MUMB. FATHERI

T i.IE NO|.i HAVE THÉ FOUR 6RANDFATHÊRS T I.IVOLVED Z
i{ GRANDPÀRENTS'/,

IF GFDA:!:B 0R GFDATSP0USE:rtB 0R GFMAiÉiB 0R
6FMA.SP0USEITIB THEN

RÊTURN(3)T
ENO,

?; 6RANDCHTLOREN :i
IF GTDBiTiA OR GFOB.SPOUSEI=:A OR GFMB:ç:A OR

GFMB.SP0USET=lA THEN
RETURN(15)'

6ND'
r slBLlN6s x

BLÛCK
RËfJ FERSON NEXTiTDAOA.FIRSTCIIILDI

I,IHILE NEXTT#!NOBODY DO

IT NEXT:giB THEN
RETURN(IF A,AGE<B.A6E 1HËN 7 ELSE 9 END)l

ÉND'
NEXT ; *NEXT. NÊXTSIBLI NGI

REP,
ENDBLOÇKI

r UNCLES AND ÂUNlS N

BLOCK
RET PERSON NEXTFi!lGFDA,FTRSTÇHILDI

NEXTM t E6FMA. F IRSTCH I LDI
Y^ NOTE THAT NEXTM IS A.FATHER.SPOUSE.FATITER.FIRSTCHILD Y,

}|HILE NEXTFi#;NOBODY AND NEXTM:fINOBODY DO

IF NEXTF;=;B 0R NÊXTM:!É;B THEN
RElURN(17)I

ËNDI
NEXTF : =NEXTF TNEXTS IBLI NGr
NEXTIt4 i TNEXTM, NEXTS I B L I NG I

RIP,
ÊNDBLOCKI

7" NEPHEt.lS ANO N I ECES "I
BLOCK
REF PERSON NEXTF:T6FDE.FIRSTCIIILDI

NEXÏM; sGFMB' FI RSTCH I LDr
l.,HILE NEXTF;#:N0E0DY AND NEXTMT#!N0B00Y D0

IF NEXTF:=;A OR NËXTM;!B:Â THEN
RETURN(19)I

ENDT
NÉXTF T =NEXTF. NEXTS I B L I NGI
NEXTT''1 ! -N Ê X TM' N EXTS I B L I NG t

REPI
ENOBLOCKI

iA COUSINS 7,

IF GFDAi=:GFDB OR GÊDAi=iGFMB OR GFMA:l::GFOB OR GFMAi=iGFMB
THEN RETURN (27) I

END,
ENOBLOCKI

ENDBLOCK,
RETURN (E4)

'ËNDPROCI

*t SËCTI0N 50 *r

7"* 1 *l

TITLE
SIMPLE ARITHMElTC OPERATIONS'

EXT PROC () REAL RREAD,
ExT PR0C (REAL) Rl.JRTr
EXT PR0ç (REF ARRAY BYTE) Tf.lRTr

SVç DATA RRSED,
BYTE TERMCHI IOFLA6I

ENDDATA'

EHT PROC ARIlH ()I
REAL OP1:=RREAD0I
BYTE 0PCHAR;=IERMCHt f PlCt(UP 0PERAl0R SYMB0L |'||HICH TERMINATES f

Z FIRST OPERANO X

REAL OPEIIRREAD(), RES'

U NOI.I USE CLOSENË$S OF CHARACTER VALUES OF OPERATORS U

Sb/ITCH 0PCHAP-r*r+1 0F
I.It'LTI PLUS' I LL, MINUS I t LL, D IVI

1L!S U ALL OlIIER ÇHARACTERS DROP THROUGH 7.

TI/RT ('I LLEGAL OPERATOR ")T
RETURN'

PLUSI RËSla0P1+0P2,
ç0T0 EXITr

MINUSI RESsr0Pl-0P?r
çOTO EXITI

MULT: RESIcOPI*OPA,
60T0 ÊX I Tl

DIV: RES:r0P1 l0P?r

ËXITI
RI,IRT(RES)I

ENDPROC I

** sEcTI0N 32 *r

I*1*T
TITLE
PR I NT ROMAN i{UMËRA LS
vERSI0f.t 1 19'.12.1973r

LET TRUE=?55i
LÊT FALSE=01
LET NL=10r

SVC NATA RRSIO,
PROC () ôYTE IN,
PR0C (BYTE) 0UTr

ËNDDATAT

ËXT PROC (INT) I|^lRTI
ExT PR0ç (RËF ARRAY BYTE) Tt{RTr

DATA NUMERALS,
ARRAY (2ô) INT RoUAN te (-1 (?) r 100,500 ,-1 (4) t1 ,-1 (2)

' 50r 100Û'
-1(8)r5r-1r10t-1(?))i

LAbEL FAILLABI
ËNDDATA,

,v, tiE CûtJ-D l,,lRITÊ THIS AS 0NE PR0CEDLIRE. LlE HAVË SPLTT IT INT0 Trl0 L
X SEPARATE PROCEDURES TO ILLUSTRATÊ THË USE OF A LABEL VARIABL€ 7.

7" IOR ÉRROR RECOVERY 7,

PROC INNIOIT () INT'
INT B:gIH(); T, |.iID€IIED ÊOR ARITHi,IETIC T

IF B=I I THÊN
Y. TERMINATOR T
RETURN(O),

ENDI
IF B<IA' OR B>'Z' THEN

T!iRT('#NtfNOT A LETTËRf}ILfl')I
GOTO FAI LLABI

ENDr
RgTURN(R0MAN(B-rAt+1)); Z C0UL0 EvALUATE THIS AS B-64 X

ENDPROC,

ENT PROC FRINTROMAN ()T
Z RÊAOS IN NUMBER IN ROMAN NUMERALS AND PRINTS IT IN DEçIMAL N

T FAILURE MESSAGTS AND VALUE .1 F0R ILLÊGAL CHARACTËRS 0R SE0UENCES U
r SPACE CHARACTER IS TERMINAlOR 1(

INT VALUE:=0r 0LDDI6:=100r 7, ALHAYS 0K 0N ÉNTRy T0 TEST 1(

NEi,iDIGl
BYTE TRAIL;çFALSEI

FAILLAB:=FAIL, I INITIALISE FAILURE LABEL iT

NXÇItAR:
NEI.JDT6:gINDIGIT()I
IF NEWPIG=0 THEN

"Â TERMINATCR Y,

GOTO EXIT'
END,
lF NEITlDIG>0 THEN

lF 0LDDIG<NÊl'rDlG THËN
IF ÏRAILfFALSE THEN Z TEST ACAINST ZERO FOR PREFERENCE Z

X TRAP $ËOUENCES SUCH AS IXL X
ThIRT ('#N L# I NVA L I O SEQUENC E#N L#') I
TOTO FAI L, T' USE AçTUAL LAtsEL LOCALLY ! NOT FAI LLAE Z

ENDI
TRAILI=TRUEI
NË!.JDIG:SNEt.,OIG ' OLODI6*Z

'
Z REDUCE INCOMING DIGIT T

ELSE
TRAI L!sFALSEI

ÊNDI
VALUÊI=VAIUË+NË|rlDI6I
OLDDIG:ÈNEl,lDIGI
G0T0 NXÇHARr

ENDr

f TREAT -1 CASE Y"

ThlRT('FruLf LETTER I.JOT RO},14N NUMERAL#NLâ') I
TAIL:

VALUE:e-1,
EXIT!

II{RT(VALUË) I
ENOPROC'

RrL/2604 I S4i.q I R3 / 1Ed/ 19/ 178

