
RTL/2
PSOO DOM RTL/2 User Manual

\RE THE OTHER N
STK (lNT TOP,R'N, eeF ARRAY B

TNT,ARRAY (rO1 fN
TA RTLSYS; otoTt

| æTR, XPT
519{,,lc.1|'rF?.a oF:THE 9TAGK. IT I

'6) gYTe Hx:=ro
; lF ldf NoL AND I
E- (CEIJ- 'f âqT'
' +RPTR ilÊ II iGO
= r5 E3Y-t TO O
vl EYæED9N TH

,Bl-E, CNOL). R
{# NL(Z-) , TBtf

2Ê.1-l-.166T:{f :f .

BUFtreRCI)'r''1,
..' oF Ll ,+rLFâù

'ROCi?oRETR
RocftE-F.OFt-),

rNAMe(P,€;F|.
)( : r.)/ flI-$;EIF P

-f O OP.. PfR. =l2l-OUNT:=RTI-Ç-TtO
'=q7 THEN E.AG:

)TE THAT B MARg
âTC+3); eO'lO

270 1
102$.''

or

30
oo

20
20

5H! RET?IRNC
400



PHILIPS PSOO DOII{ RTL/2 USER I,IAI{ITAL

RTL/2 Reference: 73 Version: 2

Authors: A.P. Porter
G.C. Stevenson

Date: I4Èh March L977

Philips Data Systems Pub1. Nr. 5122 gg1 28IL2

o
Systems Programming Ltd,
1 970
All rights reserved



SECTION

APPENDIX

PHILIPS PSOO DOM P(TL/2 USER MANUAL

INDEX

INTRODUCTION

T.rE R.IL/2 COMPTLER

THE RTL/2 LINI(AGE VERIFIER

TIIE RIJN TIME SUPPORT SOFTWARE

USER PROGR,AM GENERATION

svc PRocs (LKI,ts)

sTREA!,t r/O SUPPORT SPECIFTCATION

GENERATING TTTE F(TL/2 UTILITIES

SVC DATA BRICI(S

},IATHEMATICAT ROIJTINES

ENVIRONMENTAL ERRORS DETECTED BY UTILITIES

SUMMARY OF ERROR NI]MBERS

PAGE

L/o

2/o

3/o

4/o

,/o

ilo

rr/o

fir/o

rv/o

v/o

vr/o

vfi/o

TT

rrr

IV

V

VI

VII

o/t



PHILiPS PSOO DOM RTL/2 USER MANUAL

SECTTON 1

INTRODUCTTON

CONTENTS

t.1

L.2

t.3 CONTENTS

The rRaqa Prnor4ptveev - rvYr

Control Routines

Stream I/O
PSOO Interface Library

MANUA].

PAGE

RlL/2 UNDER DOM

CONTENTS OF THE RELEASE PACKAGE

1.2.L The Utility Prosrams

1 /1

L/3

L/3

L/3

L/3

L.2..L.L ',J-'ne }('r.!/Z Uompr-rer

I.2.L.2 The Linkaqe Verifier

L.2.2 The Run Time Support

L.2.2.L
L.2.2.2
L.2.2.3
L.2.2.4

OF THTS

1/4

1/É,

L/J

L/6

1 /'7



I.I RTL/2 UNDER DOM

RTT.,/2 is a compact, easy to understand, machine independent,

high level systems programming language developed by ICI
and marketed by SPL International. DOM is a si-ngle-program

operaling system developed by PHILIPS for the PSOO range of

^ômn!rÈârq

Because P<TL/2 is a system prograniming language, e.g. has

part-!.rord manipulation features as standard, it, can be

regarded as a direct competitor to assembly language for
low-level prograruning. It is also suitable for writing
applicaÈions programs being simple, easy to learn and

lending itself to good strucÈural design. It is pitched at a

slightly higher level than FORTRAN. Unlike many systems

languages, it supports real arithmetie.

The aim has been not only to supply a compiler, but Èo

incorporate many other features into a package of software

useful in generating systems. For this reason the packagie

contains two free-standing utility programs and several

items of run-time support software for the user to incorporate
in his o\nrn system.

The utility programs are released in object format together
with catalogued procedures for building the programs into
the user's system. The run-Èime support software is released
in source formaÈ so ttrat the user may either modify it to
suit his own needs or use it as an example for a private
imclementation.

We have tried to pitch our support at two levels. Because

æM I/O is complicated we have supplied a stream I/O
support package which hides ttre operating system almost

completely. If the user follows instruetions he will be able

I/L



ry

to write programs which perform I/O without having to
rlearnr DOM at all. On ttre other hand, if the user needs

the full porer of the operating system at his disposal he

can, once he has become famili-ar with the system facilities,
call upon the monitor directly from his RTL/2 program without

dropping into code. As with all independently designed,

complicated. entiLies, Èhe interface is not perfect' but with
two levels of compromise we hope to satisfy most requirements.

The user may always write new interfacinq software if he

wishes.

The host machine configuration must support the DOM operating

system. The limiting factor on core size is the compiler

which needs 20 K words. The RTL/2 software does not require

the PB57 floating point instructions, because Ehey can be

simulated. by rrur-time routines. The compiler can generate

floating point instructions if they are available.

L/2



L.2 CONTENTS OF TIIE RELEASE PACI(AGE

L.Z.L

L.Z.L.L

Tire RTL/2 system consists of two utility prograns and a

nunber of items of run-time support software. The utility
programs are supplied in object format together with
catalogued procedures for building them on the host system.
The run-time support software is supplied in source, Rn /2
nr :cqamlr'l ar

.Tho III-j I i frr Prnar:mq

The RTL/2 Compiler

The compiler generates three types of output from RTL/2

source input. Firstly it generates assembler source frorr the
PITL/2 source inpuL. Secondly the user may have produced

a line mlnbered listing of the Rn /2 source. Thirdly,
an output, fil-e which contains cross-reference information,
that may be used by the next program, the Linkage Verifier,
to perform inter-module consistenry checks.

The compiler's syntax analyser is identical to that utilised
by all other FITL/2 compilers, guaranteeing that there is
only one 1egal version of the language. Most of the code

generation section is common to other RTL/2 compilers
generating PSOO object coderso a module compiled, say, on an

IBM System/37O will be compatible wittr the P8OO.

The Compiler is described in Section 2.

Ttre Linkage VerifierL.2.L.2

This program is used to ched< that references between

compilation modules are consistent, i.e. that ENT and EXT



brick specifications match. To exploit it, the compiler must

be used to generate cross-reference fj-Ies for every module

which will ultimately be link-edited together. These cross-

reference files are submitted to the werifier, which performs

the check and prints relevant diagnostics if a mis-match is
found. The RTL/2 compiler performs intra-modular consistency

checks, while the linkage verifier enhances the error
detection facilities by performing inter-modular checks

across separately compiled modules.

The Linkage Verifier is described in Section 3.

L.2.2 The -Run-Time Support

There are a number of items in the package. Some of these are

concerned with the fundarnentaL RTL/2 environment and are

mandatory. Others may be used as required.

L/4



I.2.2.L The rBase Program'

This is construcLed from modules performing a variety of
functions. The primary function is that of initialising the
stack for a task prior ro entering the RTL/2 Compiler
generated code. The program is entered directly from

the operating system when a program is run, and returns
control to the monitor when the program exits.

The Base Program performs various initialisations and provides
system standard functions such as RRNUL and RRGEL. Section

4.2 describes the base proqram modules in detail.

L.2.2.2 Control Routines

These provide intimate run-time support to the compiled

object code. Operations which would be too bulky

as in line code are performed by the control routines.
Procedure entry and exit, global @TO's, array bound

checking and instruction simul-ations are the main categiories.

The latter is a particularly important area since the

compiler can generate code to handle various operations in
line or by control routine call. Provided the routines
are in the object library, they are selected automatically
by the DOM linkage editor.

The use of the control routines is described in Section

4.4. Further technical information is contained in FITL/2

Reference 69 r The RTL/2 Run-Time Environment on the Philips
PSOO Series.

L.2.2.3 Stream I/O

RTL/2 Standard Stream I,/O (ref. 5) specifies a mechanism for

character stream I/O and define a set of formatting routines



based on it. This set of procedures has been augmented

by a set peculiar to the DOM system for opening and closing
fi les .

Stream I/o is introduced in Section {.3 and Appendix II
describes the procedures in detail. It is a useful package

since the basic facilities it provides makes DOM easier
to use, especially for the newcomer to DOM.

1-.2.2.4 DOM Interface Library

The stream I,/O support package is designed to give the user an

easy way of performing I,/O operations. Obviously, the

implementation will not necessarily be very efficient
and is not intended to cover every user requirement. Non-I/O
oneraJ- iôns âre nôl- qrlnnôrl-ed at all. For this the user

must go to the operating system more directly. To help him

to do this without having to drop into code, a library of
RTL/2 procedures has been created which call the operating

system directives on a one-to-one basis.

In order Lo utilise these procedures sensibly, the user

must be familiar with DOM. The use of P5.L/2 cannot hide the

underlying comptexity. Section 4.5 contains a description
of the interfacing philosophy and Appendix I describes

each procedure in detai-l.

L/o



I. 3 CONTEMIS OF THIS MAI\TUAL

trach nrnoram in thê nar-kaoe has a SeCtiOn Of its OWn.\jruyqv^qYglruJ

This contains a general description, a specification of
its inputs and outputs, including error messages, and

operating instructions under DOM.

Run-time support has a section to itself. Most of the

technical details have been put in appendices to enhance

clarity.

Finally, a section has been devoted to user program

generaEr_on.

1 /1



PHrLry.s pSoo poM RTL/2 usER MANUAT

SECTION 2

THE_RfL/2 COMPILER

CONTENTS

2.L GENERAL DESCRIPTION AND FRONT-END INFORMATION

2.2 PSOO BACK-END INFORMATION

2.L.L
2.L.2
2.L.3
2.L.4

2.2.L
z.z.z

2.2.3
2.2.4
2.2.5
2.2.6

2.3.r
2.3.2

RIJNNING THE COMPILER

2.4.L
2.4.2

2.4.3
2.4.4
2.4.5
2.4.6

2.4.7
2.4.8

Description
Front-end Restrictions
Front-end Error Mechanism

Front-end Failure Messaqes

Options

CODE Sequences

Back-end Res tricti-ons
Back-end Failure Mechanism

Back-end Failure Messaqes
Hints

Installation
Source Module Size Constraints

PAGE

2/t

2/L

2/2

2/3

2/6

2/ro

2/Lo

2/12

2/L4

2/L4

2/Ls

2/L6

z/ Lt

2/L7
) /11

2/LB

2/L8

2/L8

2/Le

2/20

2/20

2/2L

2/2L

2/2L

2.3 CONFIGURATION AND SIZE LIMITATIONS

Command. Formats

Cormand Parameters

Action of the command file $RTL

IDENT statement

Example

tùorkf ile
Environrnental Errors
Report Format

2/o



z. L GENERAL DESCRIPTION AND FRONT-END TNFORMATION

2.L.L Description

An RTL/2 Compiler is a program (written in RTL/2) which accepts

as input modules of RIL/2 text and produces some form of object

code (maclr-ine code for assembly or binary for direct loading or

linking) for a parLicular machine - the object machine - on

which the modules are to be run.

'Ine

not

machine on which the compiler itself is running

be the object machine and is referred to as the

may or may

host machine.

brief descriptionsAn

of

FITL/2 Compiler is formed from four major parts'

which are given below.

t. ront'-Enq

The front-end is a machine-independent set of modules which perforrns

al-l the necessary syntax checks on the source text and creates a

version of the module in a machine-independent format. It produces

a list of error messagies and other relevant information. OnJ-y one

version of the front-end is required to compile RIL/2 on any

host machine for any object machine.

Back-End

If no errros are discovered by the front-end, its output is passed

to the back-end which produces the object code program and which

may optimise the code. It is independent of the host machine,

but is clearly dependent on the object machine and may also be

dependent on the partj-cular system on the object machj-ne under

which modules are to run.

Interface

This collection of modules provides a

the front-end and back-end, and means

data relating to the compil-ation. In

communication area between

of accessinq the various

addition to specifying

2/r



various table sizes, an implementation can use the host

nachincIq r-ârrahiIifiêq ].n oro:nise the data and access to

it in an efficient manner. This compiler contains a version

of the interface the restrictions of which are descri-bed in the

€nl I nui n^ nr^ôc!v!luvYrlrY yqYçJ.

Base

The base program is not part of the compiler but controls the

runnrng of it, calling the various phases and performing any

overlaying. It. creatàs the necessary environment for the

nnmn.i ler inclrr6.i no the -rnrzisinn nf T/O pfOCedUfeS, fileUUIIII/I rs! t !rru !qurirY

handling for source text and object code, the presentation of

compile-time options to the compiler and the presentation

of the error messages and other information to the user.

2.L.2 Front-End Restrictions

The following Iimitations (mainly of size) are imposed by the

front-end. They will noL normaLly cause any problem for the

average program. Further restrictions are imposed by

particular implementations and details of these may be found

elsewhere in this document.

j-) Name : maximum of 3I characters
)2 t-

ii) Constants : a) maximum integral value is 2--'-l
maximum of some 67 significant decimal

digits
b) -128<nr:rnber of decial places - exponent <L21

c) 'L2B< binarY scale < L21

iii \ ônfinnq
L'L I : integer key must be in range I'15

iv) Arrays : a) maximum dimension is 16

b) maximum bound ts 32767

v) Repetition : must be in the range 0,32761

factors

vi) Blocks : a) maximum number is 255

b) maximum dePth of nesting is 15

2 /)



vii) External
References

: maximum nu:riber of EXT bricks referenced

from within a brick is 50

viii) External : maximum number of distinct MODE names used

Specification in an externally known brick is 15

ix) Security : some scope checks cannot be performed

absolutely and potential danger can only
be warned

Other restrictj-ons involve the maximr:m depth of nesting of
statements, the complexity of expressions and the complexity
of modes, but no simple rules can be given.

2.I.3 Front-End Error Mechanism

The error messages produced by the front-end are intended to be

self-explanatory and to enable a syntactically correct module

to be produced with a small number of compilation runs. For
each error detected. two pieces of information are generally
given:

i-) The line nurnber on which the error was detected; this line
count includes blank lines. This line nurnber should be

exact, but inaccuracies can occur when the failure is detected
at a newline character or in a complex statement or expression

spread over more than one line.

ii) An error nurnber and/or an error message. This identifies
the nature of the failure. A table of numbers and correspondins
messages is given below.

Three types of failures are distinguished:

I) Catastrophic Errors: as the name implies, it is not feasible
to continue attempting to compile, and processing of the module

is aborted. Clearly only one such message can occur. Such

messages indicate an internal conpiler fault or a violation

2/s



of some size limilation. Norma1ly only the line number and

mcsqaoc wi l l l^ê ^ir?ôn Tf i c i-nnrÈenl- t-hâJ- .in'|.gI'n4f eI.I.oI's

are reported to Llne RTL/2 support team. A copy of the source

text and the error and line number will suffice.

II) Program Errors: this is the main class of error. The compiler

takes some recovery action and continues to process the module;

but entry to the back-end is inhibited. As the front-end is
a multi-pass process, the recovery acti-on may give rise to
side-effect errors later, but detailed consideration of the

recovery action should only be necessary when an error message

cannot immediately be understood. The general philosophy here

is to reduce to a minimum the number of side-effect or

repeated errors whilst enabling the compiler to proceed

safelv and rênôr]_ âq mânrz êrLors as it can find.

III) Warninq Messages: these can be suppressed by the use of
suitable options (but this should only be done if really
necessary) and do not inhibit compilationi no recovery action
is necessarv.

Recoverv

Various recovery actions are taken for program errors (II above; t

these normally involve ignoring the subsequent source text until
a suitable re-start point is found. In particular matching

kelnuords are used in this, and an attempt. made to ensure that
matching is complete by inserting any missing kelnrords. It is
possible that this will be done at the wrong point and this may

lead to side-effect errors.

The broad classes of recovery action are detailed below and

referred to by their number in the later table of failure
messages. Where more than one is given (or "various") the

recovery depends on the level of processing (basically brick
level, data or procedure brick):

2/a



1.

2.

?

A

q

No recovery; processing

missing keln*ords may be

continues at the next symbol;

flagged and inserted at this point.

Recover to the next sensible
DATA, ENDPROC, ENDDATA, SVC,

OPTION). Note that the dual
side-effect errors.

item at brick leve1 (PRoc, sTAcK,

EXT, EMT, MODE, LET, TITT,F': ,

use of PROC, STACK can lead to

Recover as 2 or to a semi-colon and continue processing data
bri-ck declarations; intervening declarations will not be

processed and may give rise to su-bsequent "identifier not
declared" messages.

Recover as 2 or to a semi-colon (processing any further local
declarations with the same warning as in 3) or to a statement
delimiter, i.e. RETURN, GOTO, SWTTCH, FOR, TO (when not in
FOR StAtCMCNt), IF, WHILE, BLOCK, REP, END, ENDBLOCK.

Recover to a statement delimiter or semi-colon and continue
processing statements or initialisations as appropriate. Note

that in skipping to IF it \^ri1t always be treated as openj-ng

a statenent, so that if it is textually opening an expression
further (spurious) errors are likely.

Note that errors in LET definitions may cause side-effect errors
because occurrences of the name may be replaced by null or
erroneous seçfuences. LET defined names are removed on replacement

and may noL occur as the "last identifier" in a message; the
current slanbol can also be confusinq in these error circumstances.

It is also helpful to remember that the method of driving the
compiler leads it to expect certain items or sequences i a nessage

reporting something missing may seem ludicrous when that item
is obviously present on that line; however, examination of the
supposed structure at, or just before, this point shoul_d reveal
the source of the error.

z,/ >



ù
CJ

a
ul.c cJ]JUXtt'OOrtÉHo

]J () Or lJLoq -{ rd
o1 > p (.)
çt0 CJ O fr.toÉlJ
trtr od 5E.lrOd]rfi0J u .tJ

+ru.-taj.|]
rrD ..J .iJ rd .Q Ë .lJ rd
-l çr+r d rd d..JCic).qutJ..1a
c0 .rJ OC O É É tr.lrO60l.{OliO
o c .n.-t or . 5 c) $E '.i ù ! r-l tt .lr frE rd..r ô) o o o0-)lrlrÉoo.d(.) () .Ç0) ..1 Or .a É odr-JlorinJrdcq-r ('}..1 O O O ('] .-l
tr >0 B $ .-t +r 0J nat rq-q Êc.ÉlJ Ê (Jd tr ' O Sr..t É .J OÉlJoO{{Jo(d.J.rt o fd lJ '+R or 's ! B .-l

o Ê o1 lJ E qr q) .. (J brci ç (I) E c É o..t o1 ÎJ É0J cj..rod o+ro o >(' .qEP+J ,q+r -l +J .- rd+r o lr rd Utr-l f0 ÎJ E.- c.q rû Ë Ê..1 d q)ro c+i o : ÊolJ ._t lJ IcJ r0 o'rl u o..t o E ! o.lJ É.+ Ë.-ttJ ! (J ..t
f.l -lJ (-) ..{ O O +J rO > CJ O .Co 5.ilr+r d+rrd +r É 3Oi O o> oCÉE ."rqJ >H .q -l 0) qJ Ur Cg rdoË -.1+Joro É lJ c)r-r+JOcdlrddObt ..1 C Eo rd.,J oqr u lr É o d 5.a tn.-{ tJ +J g q o{..i rd +r (n

d d o !q-r o a) |1 (,) (n a
(t E > 0) (n 0.cE().-t u()r,0ouo..!at16Oglr.ijo rd O ^ g Ci O 5 () (nv..r oÉc^ ..r 5lrhÎJ rJ 1È.C tr fU O..r -i O rd g O >(0Er tsUU- u?Ëa)8 ÊAd'.

zo
H
Fr

E
.1.

o

H

Fi
X
frl

d
0)
.lJ
H
q)

u
d
..t

o
..1

o' f.i

.Fi O OjHÉ! r+ ..{
O.-{ O bt

-lr^-
H k 'd.d..1 Éolo
(, æ 'r{.r3 Éoo \
gHEP-
Eqr o Ê>lr .{r O\oo ..{Ei

> gs
-uOÊOd'lR ..r o -C Ftr{Ud,I]o liÉtt ut0) O O'-l É 0r
.c or .|J ..1 Fl
Urd()gri!bi Éc.tJ ._1

rU Ê .-l ..1 O
É.'r E-l {og lrBÉ 'fÊ..l.u ooo
EUI t-tZZ

m
d

(n
a
..t

s
bt\
.Éu
OU(rÉ
'-l q)

t'
- dt

UJ

l1
Ofl

q)

.Ft .-1
Hlll{d.lrC

O ,q ul ''l.{J UU 5'ç-{
rÛ É'.r olr'd .Ord il.q Ê.c+rrd>oolJo
Fl Fl O r-1
FrdÉd
C( U' ..r b.'
| 1])rl 0)d.-l B '-rOr-l O.i
ZHZH

H
CJ
n)
o
olJ lJlJ+J lJ
Olr gg$ lr.po ooo o. Or OrOrOr Èe o o o o oroj0l$ trlrHofr B+roool0 O qJ () OrJ CJ lr r{ocJo(nooo()r.!oÉOrdrddod+ilro () 0)()q)0q)C) (nc)îf q)"J -iJ.-{.IJ.-rrd $>llr Or OiOrOr Ql! O O OO 5 15 d .-t .-{(tblQ .|J I x I r I o t.< r+.,1 Ét+r c)clroo q) +J (J ..lotrg

O J4 5 lr .+ fr i.{ fr o ir (n .p..J (1) 5
-1"15 O fr O OrO O O 0) O O O É+J bno o tJ rr É g fr tr É g É Ë o rû o..{o f -r o H o t{ t{ f{ fr (0 rdd E dO (n .q o O O Ci AJ É CJ É C ..1 fr .l t+-.t

lrci.trooo_ c > ç tr o rr H !..t lr > > >r+{ o >F Êoq'roo(.,ooqrcÉÉcclgO o r$ Ê -r {r r-l rl Fi (/) rl 6 d d ..{ d (/)HJHql.C ..J'd.,{q)..{EEÉ >É &OrU +rQr()Or0rortiOr Ord a)O O O'd E,iJ E E E OrÉ O o Od s O ùH!-r O.lJ O q O O O X O O O O O rr O ûÈ c0 H ul (J E O U O r't O F H H E 4 F t'j

u2

H

H
a)

Er
(n

Er

(J

frl

U)
(/)

E

LO \O t--. CO O\ O)
Ê{ r+ F{ F{ r+ r-l

F{Ncas
^^^^F{ F-{ r-1 .+

E4tr
v

Or

I I | | i t I I | | | | | | | | | -{.-1.-1.-{ JFI .+r-1.+ r-1

2/6

-l N cr) $ rr) \O F CO O -r N O r-l N co $ |.-1.{.-INNNNN

c0
f'l
rn

U)a
Ë
t'l
!-r
.f
H

tq

z
E]

I

E-rz
fr

v
--{

N



z
Ĥ

r{
E

z
H

Er
X
tq

OHo,oiulo.poooÉ
rn dU' idq !Ç É

dfrdO Eô d U..{ o lJ tlH .q or0) c,) rdu, , Ei ..1 lr f.l .-lllO_.!O{O{O
I q .H+r rr q)

F O 42 ti o dH (D El b.t Q) .lr
a) .tJ rr\É..r Ê ÉOo rdH..rqr ..1 O,ç cir .-{x3..1 o ÉP O OEIO+r '.1o' ElrîJ a') Fld E O
ç Frg0) O+t-1() o +)s a 5 0J > É o.d 0) > (J c)-r I o o 0i rdr.|..|.,t !i .{ (l) .q u)o .CoE Âd 6 (l) tr o 'd0) fr (nTJO É.1rO J4 rd .P dr/) t{ '.llr pai É (') .-t FJ d o
= o o n oc g g .-.{ (.) É .-.tq O .r É0)> o 0) u)o lr .C () E l.l rd^ .tr () € .Jq ooo -r -{> .d tl Ë hE .tr lJ5p .-{tr ..1 qJ d |) - Êl
n O q d..r .d O^- frt+r tr) O Q d2 Ê Êo 3'!--r 50 o È oQ çd o 0) .-t.. ri A ô Êro fiaj.cÉ6 +r(n-À ..ror E o^É HqsEdo oÉ .-t rd5 d': qO oO '-tO.-! 'riO o Éç-;Oo ct{ Er -r..r!tlr l'1dÉ 6ô+lcr+r
9J !5ta)'-0trl +rO Êt-'0)O ÉÉ OOI C.n+r(]OÉ drd|{d O E C ÀO..rO ro r60J.Ft 5ltÊ HdtÉO +r rd+roc o-t.lroo É+J0)0 q-{ ord..t Éo()d(n sO OO - U.lJÊ .'1..{ U rro.C.tr CJ (lJ-r55 O.-1 !.dOQ5-.r (nXq) >ordtrd ÉÉ jr +JQ H o qoq-r o d o lr (.) O O É.,r rl dgJ,Eq X o H.Cr-r oooo-.t Q{OrdoO Éqç Eqor13dl{c,uÊt{ >u'Ëkrr É0)u oço.2! O 0)..rP>o OrdOO.,r O.a Éb ..10.1'-!çÊQol.rO..irrdo+r (JoFrEU U ÉOÉ ÉJ.4J p | É..r o +r qr..r É q{ c) (/) 0 - O 0,) 0 - ..roo o'o .lr ...{.tr U) g d s.{ q) u.. È .. tt.-t o o .c() (D c.c o al Ê Ul+, É..t c') Ê | qJ o o 5,uld o !o'.TOAFEAÉç OElro É .-{(/) Édoç..J b'
--r-{- 

g q q..i q.l o, o q o,q E d a) d o._! q É Éoro ru(nçolrE.dÉed ()c)()|{ ÉoÉo oq..!q ÊÊr.-t ..rdc ara a " ô0do ._t'i+J.|J!qdoE .tr h (utro lO Êtlr .lJ(J
H..l ÉO 0)ErÉrJ.dOÉ5 Uo0J ôOjU O O!qgq -!É+l HqoA'zxcs o--l .-t 0 o -.;>É uUl.-i !ua.aa F{.rJÈ5n coc+rt{o Ë.-r+rtr- Jo O'-l > tr { Ur 5 O O O.q H d o O o tdt'{ >.+ q.) O lr 0J ^J1 d O{ t{ tr d >-q UcJrd trlOÊ ^OoO ..lO>>.lJrd Oo.trOE I q4 H o^..{ lr,Q o^..1.-lr-rrl É.trE! +r +J C O > ÉÊ ! _q ? aJs.-t.-tr+l J--]..1..1 f{ c c >dz '+r...{ >o ir dH((J(/)NB--{u2 fû--.aoO(4ÊE <Frc/)Èt o

a
ô
..t
lJ
o
!Ool]J't lr

ir .-i frO f.r
Èàu
blo.d fr c)f{o!0Q) 0

lJ5 lr
È'.r -lJ
OX rd

d .-r

çq)oci a
5> tCt'-l .t
ott o
a
90
??rv
OEq3()

q.1.._t
fr.p5 trO X.d q)
Éa)O P1r'trJ Ê 9i

'-l 'F{Éo J(6(/)..iË o
0)E c.lHQ)É+r (n
otJoul .lJ
d'.r '.1 > '.i
U't gr 4J U brl'n O Or '.1o'ri oO +r ..{
'.rgOb'c)+roc
ÉÉd'

f.t ëri n Êoolrlr -Fi
3(,a)d d>.Q qr oJ E!o5(J!c.)VU]ÉEr É,

o
(J

E

UI
d

6
aaoc!'t--.iÊr.-rÊ-rr-rF{.{.-1rr.rm d.r.+ d.r -r E Fl d h E

^a.rl -.'| ..i H Hc.l OmSNc.rS^<Tg$ $.-l'-l t |l rr Z Z ^.r{
-"{ S O 6 r1^,-l ^.Fl.F{clrf)clcocf)

z-' NclNc\lN

U{

t

fr -l(u6
F{Ulbto.qo(u
>OIJF{
OlJÉr

J4 F{ rd ..i É .'{tt q 
^''l J< o +r 'rl Ct{U -.{ O +JO.Q'"{ Ê É d..tlr \ U{J('t

rd .a U) bt .r{ rU ..1p É É or+{ fl .Qq lJ O ..{ ,rt ...{ dOrd -'J !D OOFIO+, o EoOOÉ^ Or .-t O{O+J (tl.r{ [D ..1 E ]J oE\O$r -{ .-l ÉE E o .c 5 c)('.d Jo q o tr od f.{ brolJ.rr qJ bt oooo.q..'{..{ Utq C t't lt e O.rÊ o Ê o"{ >-r -l ..1 Er .-{ ..{ -t .-.{ tr ..1 cÉdaz o dd\ d
Or Ot (') Fl J4 o U' Ut >r(J É(Lt (l)..1\ g.Fl O O d É-{-l Ei Er rdÉ -r-rk5Or-l .+ X .lr -l -.{ l,.t O OHH..H (/tv HH(mE{

1l
", 9lv€
or tl
dot{É

q-l
ood

t+rrrug9JQNdtrolJt-{t{()3oo()dodcJt't F-l (l) t1-{ -l t{ 't,É tr É dF{ rtr aj
çopq uçÉ rrb'Fq.d F..! U'' o o O c) É L ,U O+)]:lH+J É{r o.F{ >.ltD d É.-l Q1o d Q ç >. lr O oJ1 o !it O u È{ () g >..{ - o " È oio x..{ ur c d g ! dl,i.J o nFqq-rç99cqq ÉoÉ.-r ru Éq E ! 9, .d q o1'.J É o{ O ô " 

Or!..1çQtO.|.lX"Q.'{O .-loltr! tJ .J
EIP>(duJ O\,Qr.{ bl oO b|Ai tJ
.!.o .d.fr .lr ÉO+r..r.,{ É..1 O

- q') ç E Éi É-l -r ..r O Ét+rrli .Jrtr ()t!-lÉ..{ rqp0lOrd olrrd..i..t o.r.{ O
st.i q rJ .|J E ç o' br [0 lJ tJ {J ur tJO g{.-l 0)'.{ ul O O (u (u ..t (u c0 É É ; É O)-rE!çu'E.{Q{F{.-r ÉÉÉ00 EaJ ù.r_oÉ)io.c_oFr xFl .r '-dodo -ù ôHuouooHstHH ^ZOHÈ il È o

z
FlN11StO\gr-COolO FtNco$|.r) \OF. @ OrOFtc.r (-1 <' rn\Or-æOlFJF{F{Êl-{-{F{F{F{N NNNNN Nc{ N c.tcon-rc.r mô cnc')cocnc'.}
--{ -{ .{ F{ Fl rl F{ F{ rl F{ F{ rl F{ .-l È{ F{ Fl -1 -.i F{ F{ Fl r{ rl -l F{ Fl F{ r-.|

2/7



rd
+J
(û
ril

.-t

tJ
a'1

o
!
(n

o)

1J
(t)
4
E

Otç'(,
.-1 .,1 c tr cU] .lJ .,i cJ oo rt +J +J ..1.-t ! r0 .p
Érûoci.d

-r C-.r Îf aXlJ U O--.1 O ...{
XÉ o ..i68 -Jx rû c .p..{ o d

J p Ur - 
.d Lo ut o-.r É.Q rr oc. >z .u ..J É o 6 ..1 .,{

.o hl ..1 q-r .; tr ..t .j4 c oE .,r 3 |l o..{ oocqi CJ O f.{ d .Ft 0)PCjOiTCJOo>Hrdl{.;c0Oqo.Qp9r
5 q) '+r o Éro O rd X'86(n (.) 05! .-1roc)

C (-l d -O F-r.rl-l d5 O (.douo uÉc
vvLrutHËv.d.d
Or.Q C O g 0..1 r0 .-r
E ..r ..i og Ê J4rJO li .lJ lJ OrtJ > (J CO O > d X X ÉU .Q..{ O.--t o oord> gd
tr o fr ..r cD É 15.Q oolJr!-tÉul Éoq,)or.-l rd ...i iC O t'' ...{ O rd E.-c.r5 ..r trEç p c+ro!0 o .--1 .p o cJ E .-t rd c.J d c)
!'.r..r >5 '.i Ë-r ! O o o fr13O !.lrlJtH C d PrO O o .-i O lrtr-i lr ..1 O ..r É E rd .i '.H O O0)r05ordOoOrrd0)>.{J>pittlO OOX+J'.i .,{ gUlJ
È'n.dv'n-uLUPvr0cno-Qo E.Q c,)lrc ..1 ulc..lo f{Ë5 drdHEHrd É J<..rl.{E;Odo É'-lOÉ '.1 U -Qrotr >frob' u) .rtCJ.. u ir .tJ .-r o rd 

= 
..i . lr o d g .-r o! q) cr-r > (l) rr o o..t "q.q o

CJ (n O-.1 Ê >(n O.lr..l rd AJ...{ .n |r g .lJ '.1 q.r Ê rU tr d .-r i.{ -l ..1 Uq.r.q 0) O o (J O 6 lr fr prO fd l"r U.-l]J.cP UO Ê0JCJOOrfr Écdcd! {J rû o c-r o .-t t or5 tr g >É .' o +.r ..1 0J .q o o o{ o o o c.i 0J oOJd A A rdOO'.lrlJ {JOIJ1] q) li \ É tt..t (J .rr +i -.r O Ê O X lJ..r > O C O O lr O -r o +r UtO O b,o o'rlrDrdrd.-5 .É{.rt (')É.-rEu..r+J()()0)(nr0q) Fl r-r o gÉ.p
.q ! tll(/) i{ÎJç rd o Ê 0)..r | (J rd () old cdo6oofi.|4'-r .Q-l .a ÊgE
-l E o ir.-1 O 0.-1 O{fi CJ O

AJ U) Pr O qJ Ê r{ CO C Or O É O q-r +ro! aJ x c) É o q) Ê!E rd 5 rû o o.lr
ZH Ê q)Q..rD tlDËU ul +Q Fid<

:ti

3lr
(1)

C)

i)
!u!..f q:

ar)

0rt
:(jJ

E
> .rl
rc c0

Ê
0

'.6
'c
aiç
frU
c
TD

u)oll..r ir orrF
E(J>!O
o !J4
F0)>.fJ C

6{J û.1 -r.l:(/)Or
d5n
'rl ,I '-i
fiOE
oc >

6q-)qirJ(,

F, Cro

CJ

(J È^
Jé4fr
,ir li +J
!uÈru

i)!'.1-
'- Ul
.i .iJ ;r
d rl .\ 

^
'- L Jl . È

;-' N
...1 < rJ u
'-r d -l

È^1!
^d4

-!='-

.-l .! .a 'i)
! r-t -q

ilj .rt ! u)
+jl{C/=
.ij ,! .p oî>!(,

c*' -,|n u
'a O tlr
+J;!Ê.;o-Qz

v19Ë'd

..1 i\ 
^

^dôd
A*-!-l

| !,1

lJ +-J tD C,;.d FBBdÊr

J
il
6'-
!
a

u.
!
.iJ
ç
o
J

tfr

t
-i

I

l-,

frJ1l
JJ o)liJ lfôo

F-{aiu
C)

._{
:1 qJ

c,1

CE

z
C
Fl
3

a\

H

3
X
Èl

Or{
.Fl r-{+r5 0
rd q-l Huto..lfciq')()
Fl U r-l rl5 O
d..1 5 O lr

P!.d-'UÈP
ÉO+r O ${O{
d+J..{oEbrtO...l+r d É q) ctr fi
o E'.1 U C O O
ça É-.Jg$.{oo.'r É o B o.qUE.rlfr+J .lJj

o o'lr o uto.q Éç É o 0)*l+J()O .{lr
> bt lr fr l.{ ir o a.).q É'.1 O O o Uto -r .,1 ..1 0J.-tFtFtfdq.{|+]olJ
rd rd q .d ..{ ..{ ccn>birhtr+J-r..1ci60)a)ÉÉd
.-1 l{ .-r .tJ (D o > C
-r g-r X15d É OH<HF]HHHZ

ç
'n
1J
f6

,Ft
(HCJ
..1 Qoo
uto|

Ë

'.1 l'{
B

ui
Q)tH

>..r
rdo

!
OAOX

c c.)'..1 o,co(-6(')
ci(n

oq{^\H-V
UU

v^Fl ,.ri p^& H OÉ ! Éoo !Ë 'r5\..r rd ajErÊr B q)(J
ç1 g É rno.t

X C d o t'lû' b'' -.1 }{.lr..l-i!ÉÉÉ-{d..{ p o rd ..{ ..1 -.1 d -l-{ fd () +r.ds .q V-.r c.ld o ouooo o u1Jc)o' .rr o .lJ+r tnlr .. o."{o0J -r ÊÉt) ddÉrd bbi' ÈÉ.-t cd ..rÀrûEE.-{E ÉÉ'+r É.,r4J-r ..r â ..r..loÀao o..r ! ÉzÉ, o our É1 zzpÉUl\ ..t cJFl ,ltt'O'.-tÛ1ë1o oAÉ HhtOc b,cr c .rJ {J c c E c É'.r.Fr o É fr..r C 13 ..r .-i 'U ..r .rr .rr ..r ..{ É É J .o ,U d 0)o..lo 0J (novo{/l OOOoJ..{
û) o E-r Fi Or{ o oO o .rO<F{ O O U-t(|.À tû rc r0 rd rg ..t .-t o .,t ..1 o Ei (d o d (Û -Q ..{É.-l > cn U''-i cn Ê E È E E: tr < O'Fl -{ -r d trÉ .|J c) () À 0i Êa A o o 04 pr p{-.{ Éll or-r il o -t A È o È o o o -{ o o o g oo E -{ -r..r -r Ê1 kl z ri 2 z 2 J.4.d..r d q5.. Q l{ H H E H É &lÀP( Êl Ê1 l'I H E E t > H

trl
an

v)
frl

E

e.

r.l
a,

': L^
/\)H

LôËFlFlËFlFlFl Lô ÀZLn mFILO
-FTHHHHHHS<+ .WHt! z z z z 2 z 2 <$ z'.1 -,4.À z ûv ..1 'F{

O.-r N ca <' LO \O l-- @ Or O -{ N m <r |J) \O F- @ Ot
$ <$ <r s <l <T1 sf <! v$ u..) roLr)rn Lr) LôLnm LoLr)
-{ -t .+ Fl .-l -l -{ .-t .-l F-l .i rl .{ r+ r{ J .-l J .-l .-l

2/e



q)
dâs I() (Û .lJr-r oc É c.).qoaJrdÊ

rd -f t'! .lJ rd.-i o'o ol.{({-l rd É Jt
@O-rgqJ o> rrr o.q c)ap3É.lJq)(/] (.)
'-i q .Q '.{ A)(UCJ .qg 0)

*E-t !dhÉ
Hk--.4I cn.-r q-r o É +Jc.-r 3...l qj o Ioo @ ç,Ç ul^lJ 5 U] 5(dod.pf.r

Uù-V
+rE.-{lJF-{o(d'.r É.Q d'+t; ;3drd0) qr> 

|. 'i! \o 
IcolrSÉt n

O.l-lTdoOOC).-t F{ > É ..r 'o ÉlJ 5 cJ +J ..r .;oû.+-.;irj.Û |

O0)<lJ.-Êl|.q+J..lgo I
(, (û qq{ o !5+r.-l O q,;{+r 0JoO '.rrj N! >o de 6l-t...t tst O ÎJ
ÛtÊ.lq{ElOOlc..ldr+rd5p
dli.Jntd

Eu2()Éoooo ci .Ft .Ft 0.)hOrOr d X-{O.lJ..lÉOrF-ltr()d>O
Or0-O.r{..1''l F{ .J d .lJ T

!flu],'rqlgo Itiuri.FlçlcJ'.{ fd o-{ 5 ur IlJ .lJ .Q E 01 tH ..1 Io g o-.r oJ Iùrd.+.lJ5.lZJJ IOrb' o O..l J

ÇÉo5(n-c'.t ra.;ù&;u; I

lr
o
(l

lr
^c)
l.l -{dd
QO..t
Ft cnul 0
È-J

il--
rû

Itr

-a^
u)

>._l
d
0J^
H:
.-t
rdo

oâ\-
.-tô^
.-t (D

n OF-{
rJ10(0
fdorr O{>o Erd
P'dE
._j
Fi

r{!qi -ro.a d!ot{4J ..{ c')obl
5 0u

+J(n 0)()r-{ ,Q dolJ.q >c(! d>Ê EO

tH
o

oodr
n) F dq-too(t1]JÉ
0irdO

lJoo|{oq)."1 tr{ >clHc)
Ê_toÉc)oo

1
tr
d
Oi

ULQ
'rlJ4Ë+roÉl
O '.1
HHCq.ad
.p
JH.OOOrd

+Jtrqr o

oo('J
rd l.{ Ol
v!lÈ

ô
.IJ U
-i(ÛlI n)
rn .p
0')q-r Ëlr --t q)

lrooaa.po-r rd
.qdlJ+ra
3 aZrÉ
q) oF.ctsÉlu >Érd c)oJ4 (d
lt

"d u)
UAJCo +r'-tfirrdA q.t .p

q'-v

(D
..{

H .r''
ùrrddÉ tl >A)'-lo11!O O cj-lCO>rd0) cJ ov! C btoo Éc(Jc)q-{ 5 O |]-r0J r-r .aH H C') Ê..rc) 0,Q o u).ifo

.p.tJnoq,) cogoJtroqoÉ
0J o g.J
.q .q(/)l]Frdoaj>Ol--l(') qJE O.{0) E .i5.d
o (d o..t orU C Fl !D ...1o .q frrJ4(0()0(,) o.-t o.+a,l '"lfrJÎJ t{ rd 'd 0J5 .Q > uo

r{o ^..r Ê >ç '.1 .rl (d rd
H --UE

+J
_{
-l
(!

rN

H
dt

Fi
._t

otr

!
o
U

.-l Ë c.. CçoOl{
CJOJ>0Jr.l-{lrdrq qr oEo lr .d lj-r

U E OO
ôqôF

JrlJOrdpl od..1 bt cJ lrlrÊÉ.iJ5
O..lOlJOou...{oA ooÉop rdr-r oO Oi.'l (J p

rdo+) (4q{ ! Ê
vo ,rJ o +r ,iJ

]J 5>d-rad.dg5c o30)0
ôdJ^.ê

u Hdou)

Ln ,l-ô r-ô |.n Ln ln rn m ro tn |.n Ln H Lo Lo Lo l.r) H |f) rn Lô tn H | | | |.r)àZz

or
..1
E

u()
3O{oo

.J

r{>
Ë ! >iOUrro i !ottt{ .tJ ot{A! o orioàq 5! ., fl Hg-ic bn8d .5,s r{ ù Êur CIÉ'8ç E .5 '-r3

ïc ii63 5 , erg^ *3çfi c E 6;É d ..:ëeq-. -t.99 I 'Hr.9!8!fl çàilûfr+Ë tagttq_q+ gH!9qr(É 0,j+roÉ
E'H'q il eE.,i H.ë,Ê>t E 6ur.d I !'i o'S 3 ! fi g{.*..iq.r rn È rl'+r É u+r

;x;ËEËEÈË6;{b f;;{}sEeeoe ç'-.5igpt Ëgg'dt6bt>Hd*3n r ç c' o.ri >:; 3. -'d't .5 -'d.i *
b'q 8 E ' H,g E'Ë SS.în 3 Sô ÉE1ss;;;EiaÀ.g.ea* i!EaHI qo o o rd o,tE-r.+ l ô -;joEËi< a rr{ u z ùEr r,i E r.r x .'. È ..;_i à F E

._l
.tJ
I

$
+J U)do
.lJ

oulorç (u0
O l.to
UFI

oU' tiO
kJr.Ê{ E{-.1 0r >O Or-l
vu-
.{ t{ .-l
É{ Or(â

EÀ.d(l)u
+J+J >
.d.d s g

3..JÊI O oJFt ori(4o O.rd dÉ..i O'otÉ U.'H fr U()..1 (l) d oFt .-r t+.t OrJJJAC....vH.-r o.-t o o\.q\o o
E1to b]o tJÉ-.lc515 (nl 5'Êt ..1 o r4l ooFroFl+r olOOod0)dl LÎr'Ë B''É E Ë El .5

-i -l rU Êll A1
Êr .-r O .-r rr =l dOHE{HCq I Erut

oz
(f)<roo
NC!

El-
Al . c!gI R R

æOrO-lN@@olorol
Fl r-l Fi .{ F{

co $ Lo \o a.-@co@@co
F{ F.l F-l F{ Fl

-O -t c.r cr $ LO \O r-- @ Or O -t NF- f- f-. t-r t* t-- |.- F- r\ r. co co co
F{Fl FIJFIÊ{.1 .-l-l F{FlFlJ

2/g



z.t PSOC BACK-END I},II'ORMAT]ON

Options

In ai'Lir-ion to tie standard ropitems' (NW, NS, BC and BS)

appi::acIe 1--o aLL RTL/2 iniplementations, further opitems

specific tc cnis compiler are available. In any OPTION not
.--.+âi*inq: rr:r#inrrlrr nniÈam the deiaUlt ValUe WilI be3^:"-vyrvv.|.,

!ak-in. The full set of opitems is as foll-ows:

BS

Interpretatj-on

i nhihi r r^r:rri n1 mêqqâdêq

inhil-rif cnnno r^r:.. *rnr_n9 messages

a?ra\t l-rnrrnÂ -Lronlzc rnn'l i aÂ i n

'safe' cases (qives full checks

1n application languaqe)

â rrâ\r hnrrnd nho akq ann l i orl i n

t."-^^Ê^r i- ^.,^-^-^

'I lncrrrca

minirnal comments only generated

in object code

run tt-me Itne numDer monrcorang

Default Val-ue

all warning messages qiven

all scope warning messages

array bound checks omitted
in tsafet cases

array bound checks omitted
t rrnqafa I naeoc 'i n qrrqf omq

t ---,.-^^lqrry uav ç

full comments generated

I
I

i.-.-"- .,,.-1
I

ln

NC

TR

FP

i nnnroril

fixed-point overflow detected
hrr nnnl-rnl rar'+i- _*.+nes

no run time line nurnber

mn-i +av.i -nnrvtrr uv! trrY

all float-lng point by control
routines

r.ndinc t-n rrsc PR$l

point unit will be

where applicable

€1^-+.i -^r lvq LltlY

generated

CM,QT.

overflow ignored

2/Lo



2.2.L

Notes:

NW and NS should only be used

because the messages overflow

where a module cannot be compiled

the message pooI.

CI'l and QK have been j-ncluded for compatibitity with earlier
compilers.

BC and BS give the user control over two types of run time
array bound checks. A 'safe' case is one where even if the
bounds are vi-olated no corruption of the software structures
can occur - an exanple is .".Urnn out of an integer array.
An'unsafe' case is one where corruption can occur - any store
operation is unsafe and reading from an array of references
is also unsafe because the walue obtained may, when used as

an address, cause corruption.

In the applicaLions language checks are always applied in the
unsafe case; BC allows the user to apply them in safe cases

also. In the systems language checks are not normally applied;
BS allows the user to apply them in the unsafe cases to bring
security up to the level of the applications langTuage and BC

allows the user to apply the remaining checks.

It should be noted that in the case of a constant subscript of an

array accessed directly ( that is noÈ via a ref array variable)
checks are always carried out at compile time and never at run
time.

OPTIONS may be altered at Compile time as detailed in section
2.4.2. However, it is only possible to affect OPTION statements
within the source programr êDd it is therefore good practice
to include at least one OPTION statement in every RTL/2 module.

2/rr



2.2.2 CODE sequences

The syntax follows ttre overal-l stand.ard as described in the
RTL/2 Specification Manual thus:

Codeseq ::= codeheading codeitem....

Codeheadinq ::= CODE digitlist, digitlj-st;

Codeitem ::= ISOT-character-other-than-& on @

rl
la variable-name | @ data-brick-name

Thus in thrs inplementation the characters rtrip lranC'trLp 2l

of the specification manual are a and @ respectively.

fhe two values denoted by "digitlist" in the heading denote,
i n Lrwfeq - j-hc .ôrê qnÂ1..e rprrrri 76Â 1.rrz +l-ra anÂa i rSglf and

additional stack workspace required at run time.

Ttre forms ç variable-name and

a variable-nane @ data-brick-name

are transformed by the compiler as follows:

2/tz



CORRESPONDING ASSEMBI,ER

ainteger

&fraction

p.ql-ri na

&name

&&, &G

aidentifier

&nodename

Sbrickname

aliteral- labe1-name

&localname

&component@node

&gIobaI name @dat a-brick

literal value in hexadecimal

symbolic address of conceptual zero

element of strinq in pool

label followed by colon

&, @ respectively

depends on use of identifier as below

length of mode inliteral value of
decimal

symbolic address of start of brick

symbolic address of label

displacement of variable from current
Iinkcell

displacement of
of record

symbolic address

component from start

of variable

offset from 412 of the lowest addressed

workspace word available to @DE section

2/L3



2.2.3

For further information
representation of RTT. / 2

69, "The RTL,/2 Run Time

Eack-End Restrictions

iii) Arrays:

iv) Blocks:

v) Procedure calls:

on code statements and the run-tlme
prograrns on the P8OO, see RTL,/2 Reference

Environmenr on rhe p8oo" (5lzz ggl 2g11x)

following additional restrictions are imposed by this back-
(independently of ttrose of the front-end). They are unlikely

be encountered in practice.

i) Generated labels (that is labels implied by conditional
statements,/expressions and repetition statements) :

: maximum of 32367

ii) Strings: maximum of 3ooo distinct strings
in pool

maximum dimension is 8

maxirrrum dePth of nesting is 15

maximum depth of lexically nested

procedure calls Ls 24

end

{-n

Tttere are also natural restrictions on the size of integer and real
constants imposed by the nature of the object machine.

Rea1s have a maximum binanr exponent of + 32167.

Back-End Error Mechanism

T'he mechanism employed by t.i:e back-end is similar to that of the
front-end. Few errors are detected by the back-end - most are

internal compiler errors (which should be reported to the F<TL/2 Support

Team) and violations of the restrictions of the previous section.

t)^

2/L4



2.2.5

For each error detected, two pieces of information are given:

i) The line nr-unber as for the front-end.
ii) An error number. Note that the numbers will not be distinct

from those used by the front-end and an indication of
whether the messages originate from the front-end or back-end

will be given if necessary. A table of numbers and corres-
ponding messages is given below.

Three types of failure are distingruished as for the front end

(see 2.f.3). The only significant difference is that no

particular recovery action is visible to the user in the case

of Program Errors. Note that in the case of Catastrophic Errors
(which terminate the compilation) and Program Errors (which do

not) the assembler module produced by the compiler will be of
no value.

BACK_END FAILURE MESSAGES

MESSAGE EXTRA INFORMATION

Blocks nested. too deeply

Not used

CATASTROPHIC ERRORS

Program too long

Too many generated labels
Too many strings
Compiler error - please report
Array of too many dimensions

Compiler error - please report
Compiler error - please report
Too many levels
Compiler error - please report
Compiler error - please report

Compiler error - please report
Compiler error - please report
Compiler error - please report
Compiler error - please report
Procedure calls nested too deeply
Compiler error - please report
Compiler error - please report
Compiler error - please report
Compiler error - please rePort

I
a

A

5

tf

7

9

lo
l1
I2

13

L4

l5
l6
L7

t8
I9
20

2/L5



2 .2.6 Hints

PROGRAM ERRORS

101

ro2

103

104

107

WARNING MESSAGES

i{ESSAGE

Integer constant overflow
Fraction constant overf low

Real constant overflow

Compiler error - please report
Array exceeds 32767 bytes

Unknown option
Real constant underflow

Integer too big?

201

202

2o^3

There is little extra cost j-n space in applying array bound checks.

fhis is because the routines which perform the checks also do

other operations (such as subscript alignment for non byte arrays)

which are normallv done inline.

The compiler contains certain memory features and, other tttings
being equal, it will remember a simple subscript, array base or

record base from operation to operation. Statements using the

same bases or subscripts should therefore be grouped together.

Conversions between normal and fine forms of integers and fractions
may generate up to 14 bytes per operation.

2/4

tii
*!
sl
nt

âl

{l
9t



?? CONFIGURATION A}TD SIZE LTMITATIONS

Installation

The F<TL/2 Compiler is built as a self contained program

running under DOM. With dynamic memory buffers it requires

20 K of core and optionally a line-printer for source

listing, error messaqes and report. Alternatively, the console

can be used for this purpose.

Information on building tLre Compiler is contained in Appendix III.

2.3.2 Source Module Size Constraints

The maximum limits for the resorrrces are:

Resource Maximum

fdent.ifiers
At brick level
Identifier naJnes

Name Characters

Generated labels
Constant PooI

String Pool

Array bounds

Mode Information Pool

A table showing these limits and

can be printed at compile-time.

400

25o-

25c-

1500

32367

looo

3000

50

500

the resources actually used

2/L7



2.4.L

RUNNING TFIE COMPTLER

CN is set
mode. If
mode will

- |:,-_-l , - ..r I uL! I rr tne source

is omitt.ed or is sec

assumed.

r$RTLIFN=file
r- -tr
| ,INFO = nl I ,TS - fifs

r-
LOP5t-

2.4.2 Parameters

l-a

be

INFO specifies the degree of reporting (see 2.4.9).

Tf INFO = 2 in addition, the use

a list of unidentified variables

If INFO

the line

If TNFO

This is

Command Format

The compi]er is stored in the system ri-brary as a road module
named RTL- There is a catal0gued procedure $RTL in the system
procedure file M:PRoc which sets up the file envi-ronrnent for
the compiler. The compil-er can only be run using this procedure.

narne [-,u : useriall l,ol : co'trofl
coae-l [on. = oprion-f Çoez = opLioriJ
: optiod l,xnrr : fite ""*;l [,oe : r<er-l

FN specifies a li-brary source fire containing the RTL souïce to
be compiled- rf u is specified the file may be in another
usert s library.

rf FN is not specified., the temporary source fite /s is taken.
However this file will be overwritten by the output so /s must
have been saved previously.

If INFO : I only minimal reports are output, titles, errors
and a success or failure message.

is to be compiled in systems

to anything else, the applications

resources, brick sizes and

output.

= 3 in addition, a concordance table is output showing
numbers on which each variable occurs.

9999 in add.ition, an interphase print is produced..

corupiler debugging aid.

of
.:^
I5

2/L8



T,S specifies the file code to which the listing of source
will be sent. The file code must be assigned. Default is
O, (zero) for no listinq.

By means of OPI to OP5, a source statement of the form;

OPTION (n) opitem, opitem,
may be modified. by specifying the OPTION number in brackets
followed by opitems separated by semi-colons. The number in
the OPn parameter has no significance.

e.g. a source statement

OPTION (2) NS;

is modified by specifying

OP1 = (2) N!ù;TR

to OPTTON (2) NW,TR;

The source risting, however, is not modified. XREF specifies
the name of the data file under which the cross reference
data generated by the compiler will be stored. Default, the
data is scratched..

rf oB: I@F, a command, IGF /O will be executed. after assembly,
to store the object code in the object, library.

2.4.3 Action of the conrnand procedure $RIL

The command procedure uses filecodes /BD, /BE,/BF, /f. ana /s.
They are released after use except for /S. The user should not,

use these codes for local files. If the compilation is
successful , the procedure wi-ll assemblethe output, and if r-equèsted,
keep the cross-reference data and object data.

The user may wish to alter the procedure, for example, to change

the d.efaults or to add extra OPn parameters.

2/Le



aÀÀ

The user should note that, blank lines and the ? sisns are

significant..
If the cornpilation is unsuccessful, the command

file is skipped until the second I sign is read. This ensures

that commands like Assemble or keep cross-reference data are

not attempted when no assembler output is produced.

IDENT statement

AII RTL/2 modules must have

this form:
an IDENT statement on line O in

.,IDENT-<name of ug to 6 characters)y'o<conments)%

The number of spaces in the statement is optional, but. the

fo::n above will enable the source module to be kept in the

Iibrary under the name in the IDENT statement using KPF /S.

This statement is copied to the assembler output file in the

form:

\ roem \ < name >

Care should be taken to keep the assembler output in a different
Iibrary file from the RTL/2 source, if the output is required.

2.4.5 Examples

îo compile PROG with a listing to lineprinter, in applications
mode, use;

$RTL FN:PROG , LS=2 , XREF=XPROG 
' 
OB=I(PF

however, the compilation fails because of a syntax error,
user might use the following sequence of commandsi

PROG,/S

:: EN

KPF/S

$RTL INFO=I, XREF=XPROG, OB=KPF

Tf,
the

LED

2/20



2.4.6 Uorkfile

The compiler uses a random access workfile of up to 80 sectors.
The sectors are al-located one at a time during compilation.
If the disc becomes fu1l, compilation is abandoned. Filecode

/BE is assigned to the workfile while the compiler is running.

2.4.7 Environmental Errors

These are described in Appendix VÎ.

2.4.8 Report Format

The compiler, during the conpilation of progrâms, outputs
a report to filecode 2. This report in the full form contains:

(a) Compiler identity.

(b) The source program w:ith line nurnbers, if LS # O.

(c) The operands of rtTL/2 TITLE statements at their point
of occurrence.

(d) Compiler error diagnostics and warning messages in
the format,;

f r'l
{ | <error nunber> LINE (line number)

LBJ

where F or B is printed to indicate wheÈher the compiler
Front or Back end found the error. The significance of
Èhe (error nrunber) is defined in section 2.1-.4 of this
nanual if it originates in the front end or section 2.2.5
in the case of the back end. The (line number)refers to
the nr:mber of the line, in the source progrâm, where

the error is detected.

2/2L



(el

(f)

A warning if compiled as

A resource table is INFO ) 1.

systems module.

(s)

(h)

(1J

A concordance table
mrmbers if INFO>2.

Tç r1^^ ^^-*i I ^!i1r c.ne compl_taEron

names and sizes if

of identifiers and their iine

is successful,
TNFO>1.

Iist of brick

(j )

"FAILS <error nurnber ) "

The Final Message "coMPrlATroN oK" or
which is also printed on the console.

If the compilation fails due to a

error (described in Appendix VI)
(e.9. array bound check or staek

môC<âdô.

fatal environmental

or a standard error
owerflow), the

''COMPILATION FAILS''

2/zz



COI{TENTS

3.1

3.2

3.3

3.4

PHTLIPS PSOO DOM RTL/2 USER MANUAL

SECTION 3

TIIE RTL/2 LINKAGE \ERIFIER

IN :R,ODUCTION

CROSS.REFERENCE INFORMATION

3.2.L Key Letter Interpretation

3.2.1.1 X-ExÈernal References

3.2.L.2 N-Entry Points
3.2.L.3 R-Control Routines

3.2.2 Notation for Data ltems

3.2.3 Examples

3.2.4 Compiler Generated Data

3.2.5 Hand, Coded Cross-Reference Information

3.2.5.I Direct Hand Coding

VALIMTION ERRORS

RTJTINING THE LINKAC.E \TERTFIER

3.4.1 Cornmand Formats

3.4.2 Example

3-4.3 Envirorunental Errors

PAGE

3/L

3/L

5/Z

3/2

3/2

3/z

3/3

3/s
3/ 5

", 
/1

3/7

3/7

3/Lo

3/Lo

3/LL

3/L2

3/o



INTRODUCT]ON

A rurrnable RTL/2 program is produced j-n three staqes:

Compile FITL/2 modules into assernbly code.

Assernble the modules.

Build the modules into a loadable proqram with base

programs and system libraries.

Any undefined labels, multi-defined procedures, etc. discovered

by stage 3, wiLl necessitate the source being edited and the
fhraa c+â^ôc hôihn rana=raÀ c^me errors will not be identified

by any of the stages, €.9. an'ExT'brick specification differing
from the rENT| definition of that brick.

This d.ocument describes a program which can be run between
qf âdê f l ) :nrl ef\-, *..- -Jage (2) 

"rU rrr-, report all errors including
those not detected by the above Èhree stages.

Note that the use of the Linkage Verifier is not mandatory.

However, its use is highly recommended when a new program is being

built for the first time or after sr:bstantial chanqes have been

made to a functioning system.

CROSS REFERENCE INTORMATION

This information is output by the P.TL/2 compiler to the data file
specified by XREF in the compiler's command sÈring.

It is arranged as a series of separate items, each starting a

new 1ine, and each being written as an assembler comment. Each

type of iÈem is indicated by a key letter, which is the first
non-layout character to be found after the asterisk. An item of
data looks thus:

* (key letter) <data item list)

Spaces enbedded within the data of an item will be ignored.

(r)
(2)

(3)

3.2

J/L



5.2.t Korr 'l ol- ior i ni-arnrol-af i nn

The Verifier interprets cross-reference items which have the

key-letter N, R or X:

Items with the key letter lxr appear for every EXT or SVC

declaration in an F<TL/2 module, and for control routines and

any other tRr nurnber labels used. There are five forms:

l name ,t /inL ) and spec'j are defined in 3.2.2.

3.2.L.1 X - External references

XPt z ng111",

XS, ( name )

XU, < nanne ;'

XV, : n6lPg '

XY, ' n4g1g '

and XRnn

.1 spec ; which defines

. spec which defines

. spec which defines

. spec'which defines
, spec. which defines

which defines

an EXT PROC brick
an EXT STACK brick
an SVC DATA brick
an SVC PROC brick
an EXT DATA brick
an external 'R' nrunber

3.2.L.2 N-Entrypoints

Items with the key letter
for every entry point in a

I N I def ine tJre name

module. There are

and specification
five forms:

NP, i name > , < spec ) for an ENT PROC brick
NS, {. name} , ( spec> for an ENT STACK brick
NUr< name) = (int) r (spec> for an SVC DATA brick
NV, I name ) = < int ) r <. spêc,r for an SVC PROC

NY, .i name ) , < spec) for an ENT DATA brick

Note that the SVC DATA and PROC items define an entry integer
value as well as a name and description; this is the value

the nanne is to take in any module that refers to the SVC DATA

or PROC thus defined. For an SVC DATA brick this integer is
the address displacement (in bytes) of that data brick from the

start of the SVC area. For an SVC PROC this integer is the

data following the LKI"I instruction into which an SVC PROC call
is compiled. The method useC to include NU and NV items in

3/2



the cross-reference
3.2.5.

inforrnation is given below in section

Note that R numbers are not defined
below.

3. 2.1. 3 R - Control Routines

bv tNt items. See tR'

This item defines a control routine so that it may be referred
to in this and other modules. The item mav have five forms:

Rnn = ( int)
Rnn =< nane>

Rnn =srlâfirê, +-int>
Rnn :... Rmm 2

Rnn :. Rmm + int >

where nn or mm are

The Inamet which is

entry point name.

2-digit decimal numbers.

referred to must be a module nanne or

'Rmmr which is referred to must be another rRf nurnber already
decl-ared in the sane or a previouslv linked module.

The method used to include an rRr declaration is a module is
given below in Section 3.2.5.

3.2.2 Notation for data items

In the descriptions of items

- this indicates a

the following symbols are used:

decimal integer.( int)

( name > this indicates the name of an RIL/2 brick or module.

It should be noted that the Linkage Verifier, like
the asseml^'ler, restricts names to a maxim,m of six
characters. Ionger FIIL/2 narnes are, therefore,
truncated.

3/3



< spec >

B byte

I INT

F frac
R real
P proc

L label
S stack
E ref
Y raf ârrâ\t

A array. Ttris will be followed bY

(decimal) separated by a t r t, if

this is the brick specification string output by

the compiler. It gives, in a coded form, a list of

data types or parameters and results involved and

is used by the Verifier to check that, for example,

the description of an E)fI data brick is correct.
The slanbols used in these strings are as follows:

M mode. This wilt be followed by a specification of the mode

and tenninated by an 'N', or, if this mode definition is

already in the specification stringr bY a backward pointer rY'.

end of mode.

backward mode pointer. This will be followed by an integer

that indicates the position of the relevant mode definition
in the string as a count of characters from the beginning

of the string.

type or result of proc. Followed by the characters defining

the result of the procedure, or by a'Q' if the procedure

returns no result.

repetition factor..

indicate ttre number

specifications.

String terminator.

the bounds of the array

there are more than one.

This will be followed by an integer
of repetitions. Not used in record

;i
1
i']

N

Y

T

3/4



J.Z.J

5-Z-4

(r)

(2)

Exampl_es

T\^/o exâmFles of cross-reference information are:

ENT PROC OUTTP (BYTE X)

which would result in the following cross-reference
data:
*N P,OUTTP,BqaZ

ENT DATA DTX;

IN? I,J;
REC HOLDER;

REF REC PTR;

REF ARRAY BYIE RAB;

ENDDATA;

which, if REC is defined by MODE REC (INT II,I2,BYTE
83); would yield *N Y,DTX,IT2I',IIIBF,Y4XBZ

It can be seen that it is easily possible for these specification
strings to be too long to fit on a singile line. If this is the

case they continue on as many continuation lines as necessary,
each line starting v/ith an asterisk.

Compiler Generated data

Cross-reference items are arranged by the compiler in two main

groups. The first group describe the EXT, SVC or ENT

declarations appearing in the module, i.e. the narnes and

paraneter or data layouts which the Verifier must check. The

second group define the layout of the compiled brick structure
of the module in sufficient detail to enable the progra.m to be

Iinked in other operating systems. The second group is however

ignored by the Linkage Verifier.

addition cross-reference infomation witl contain details
non-RTL/2 external and entry references. These include:

In
of

3/s



(i) 'Rr numbers, i.e. labels of the form Rnn (nn being

two digrit decimal numbers in the range @ Lo 99)

which represent control routines or other system

addresses and constants.

(ii) Entry values for SVC PROC and SVC DATA. The compiler

will generate external reference calls for standard

control routines. Other non-RTL,/2 items are

inserted by hand either via the compiler in CODE

statements or in hand-written modules - see Section

3.2.5.

The order of cross-reference inforrnation is irnrnaterial except

that rRr numbers used in defining others must be predefined.

3/6



3.2.5 Hand,-coded Cross-Reference Information

A user may wish to include non-RTL/2 Lbems of his own

specification in the Cross-Reference Information. Such

information is directly supplied to the linkage verifier.

3. 2.5. I Direct Hand Coding

Vùhere a module has been written in assembler, the cross-
reference data must be hand-coded according to rules in
sections 3.2.1 and 3.2.2, and input directly to the linkage
verifier.

3.3 VALIDATION ERRORS

Errors detected by the Linkage Verifier in the cross-reference
information are reported. to the user by a message of tlre
form:

LNK ERROR int

where the integer specifies the t1.pe of error. Some error
messages wiIl contain additional information as ind"icated
below, which will follow the error number and be separated from

it by a comma. On the following page there is a complete list
of the error numbers and their meaninss.

3/7



SIGNIFiCANCE

An illegal item has been found on the cross-reference
file beinq read.

The list used within the Verifier to hold 'ENT' brick
information has overflowed. If this error occurs other
side-effect errors may be generated as the Verifier
resets its list pointer and overwrites the previously

assembled i-nformation.

The list used within Lhe Verifier to hold 'EXT' brick
i-nformation has overflowed. If this error occurs, other
side-effect errors may be generated as the Verifier resets
its list pointer and overwrites the previously assembled

information. The error is less likely to happen if the
order of input of the cross-reference files is such that
tENTt definiti-ons precede their rE)fIr references.

Two !ENT' bricks have been declared with the salne name.

The name is printed.

The specification of
the 'ENT' definition
is printed.

tExTt brick does not conform to
the brick. The name of the brickof

An 'EXT| brick has been defined for which no corresponding
|ENT' exists. The name of the brick concerned is printed.

An rRr nurnber reference has been found that is not of the

for:rn 'R digit digit r. The two characters following
the 'R' have been treated as digits and the value resulting
from this treatment is printed.

An attempt has been made to define an

The number concerned is printed.
nurnber twice.

3/e



I
SIGNIFICANCE

An tRt

another

in the

nurnber definition has
tRt number which has

cross-reference input.

been found which depends on

not previously been defined

The number concerned is

10

printed.

external reference
not defined. The

has been made to
number concerned

an rRr number that
is printed.

An

is

ii

Notes:

G)

/a\

Error nrunbers 6 and 10 are only output during verification
after all the cross-reference files have been input.
Errors l-4 and 7-9 are only output as the cross-reference
inforrnation is read. Error nurnber 5 may appear at either

The limit for error 2 in the current version is 15O ENT

bricks. The limit for error 3 is 3oo unresolved EXTrs

at any one time.

3/e



1A

3.4.1

RUNNTNG TIIE LINI(AGE VERIFIER

Command Format

The catalogued procedure:

gr,vE l-rN = fite ,,*"1 [*" = fire name-l ["s = fite code-l

is used to run the Linkage Verifier.
If fN is specified, the module names are read from the data file
nane supplied. Default is the system console.

LVE uses t]-e line editor to build a source file of cross-
reference data, starting with )F and adding the module nannes

supplied. The default. for XF is the standard file R:)REF

containing all th.e system d.ata. This file must be in the

user's library.
LS is the file code to which the listinq of source is sent.

Ihe default is o (Zero) for no listing.

When the procedure is run, the program asks for the names of
the cross-reference data files for the user modules. Supply

the names separated by commas or a new line. Ttre list is
terminated by replying with a ner^r line. e.q.

MODULE NAMES? Xl,
MODULE NAMES? X3

MODULE NAMES? (:r.\/

If the rN parameter is specified, the prompt is still output

but replies are read from the data file specified.

Remember to add a blank line at the end of the file.

x2

@

f,-i \

The procedure then runs the line eôitor.
output warning messages on ttre console:

EOF ÏN AUXI TNPUT

These are of no consequence.

Ttre editor will

3/to



J.z*.-L Cont..

3.4.2

See secti-on 2, Running

storing cross-reference

Example

If a data file is not in the library, the editor will ask for
the command to be re-entered on the console. Inspection of
the line printer log will reveal which module name caused the
error. If the cause is mis-typing a name j-n the first phase,

tfte command. may be re-entered as

ZZJN qname),O,IOOO

After verification, a messaqe

VERTFTCATION OK/FATLS

is output on the console

line printer.
and any errors are reported on the

the Compiler, for information on

data.

A program is cornpiled as

$RTL FN=PROG, XREF =X:P

The compilaLion is successful so;

$LVE

MODULE NAMES? X:P

MODI'I,E NAIT,IES?

EOF IN AUXI INPUT

3/tt

vERrFrcATrsÀr oK (oR FArLs)



J.+.J Environmental Errors

Ttrese are described in Appendix VI '

3/L2



CONTENTS

4.1 INTRODUCîION

4,2 BASE PROGRAM

^44+. é. | .

4.2.2.
Â47+. L. ).

PHILIPS PBOO DOM RTL/z USER MANUAL

C11NMTr\'T\1 AJlW I IVII +

THE RUN-TIME SUPPORT SOFTWARE

Short Version
Long Version
RRGEI

4.1 STREAM r/0
4.1.1. Stand.ard. Library Proced.ures

4.1.2. Strearo f/O Support Proeed.ures

4.1.1. Communications with Stream I/O Support
Proced-ure s

4.1.4. Stream f/O Support Mod.ule

4.1.5. The Detailed. Specification

4.4 CONTROL ROIlllrNES

4. 4,1. Using Control- Routine s

4.4.2. Errors Detected. by the Control- Routines

4,5 USING MONITOR REQUESTS (lrus)
4.r.1. Monitor Requests in R\L/2

4.5.2. Proced.ures for Getting and- Releasing DSrnarnic
Buffers

4.5.1. Example of IJse of Dynanic Suffer Proced.ures

4.5.4. Other Monitor Requests

4,5,5. Monitor Requests not Includ.ed.

4. >.6. -EjxamBle

PAGE

4/1

4/2

4/2
4/1

+/t

4/'
4/5
4/5

4/6
4/6

4/6

4/7
4/1

4/1

4/B

4/B

4/e

+/g
+/g
4/10

4/10

4/o



4.1 TNTRODUCTION

Tl^re RTL/2 package for DoM contains several run-time support
items, some of which are mandatory. This section of the

User Manual describes the modules at the user level.
Further information concerning implementation may be found

in Append.ices. All run-time support is supplied in source

format to enable the user to tailor any aspect to suit
his particular requirements.

The mandatory items are the 'Control RouÈinesr and Èhe

tBase Programr. The control routines provide run-time
support lor the compiler-generated code and as such are

bound intimately to tLre compilerts eonventions. The base

program provides stack initialisation, error handling and

other miscellaneous features necessary Èo interface F<TI,/2

programs with the host environment.

The optional items are the components of the stream I,/O

support package. This obeys the RTL/2 standards defined in
RTL/2 Reference 5. Tbre character and formatted I,/o routines
defined there have been augrmented by procedures which allow

the user to open and close files and swiÈch channels without
having to be familiar witfi the rather complicated f/O interface.
ff the user wishes to utilise the full power of the operating
system, which means interfacing at a lower level, procedures

are available for making 'link to t'lonitof requests. To work

at this level the user must be familiar with the operating
system in detail.

Useful items of support docuîentation for tlris section are:

RTL,/2 Ref.NIL/2 System Standards
---/^ ^, -/^K:J:JJ/ Z btallCaIct Ulream I/U

The RTt/2 Environment on the PBOO

nnL/z ner.
nnt/z aet.

4 (itzz ott 28961)

, (1122 o11 28971)

69 (5tzz g9t 28111

4/1



4.2 BASE PROGRAM

Aal+. a. I

The base proqram, RRBPGTis written
conditional assembly instructions
versions of the progran.

Short version

PRocsz \ngu \o
The stack length n in bytes is

These assembler statements are
in RRBPG.

in assembler. There are

to generate long or short

set by SrLEN\nqu\ "
just after the EXrRN statements

qJ

h'\

c)

d)

e)

This provides:

fhe SVC DATA bricks.

Data for the SVC procedures.

Code to get a dynamic buffer and initialise it for the

rnrr-time stack, initialise registers for F.TL/2 and call
the userrs outermost procedure RRJOB.

The standard. error procedure RRGEL ( See P<TL/2 Reference 4)

The standard procedures :

RRNUL - NulI parameterless, result,less procedure.

RRIPF - Default input routine.
RROPF - Default output routine.

RRIPF and RROPF consist of a call to RRGEL wittr error nurnbers

98 and 99 respectively.

To assemble the short version seÈ

4/2



4.2.2 Long version

The long version is as the short version but in addition RRGEL

gi-ves a register and stack dump on file code 2.

To assemble the long version set PROGSZ to any value except O.

4.2.1 RRcEL

(see RTL/2 system standards, RTL/2 Ref . q $122 O11 28961',

The FM impJ-ementation performs t}le output of an error message

and passes control to label ERL (if this is in scope). If ERL

is not in scope, an RTL/2 error 3 is generated, the run-time stack
is released and a program exiÈ is executed. (LKM 3).

The message is output on the line-printer and the operator consol-e
(file codes /2 and, /O1) and has ttre format:

RîL/2 ERROR (error nurnber) LINE (line number)

Where (error nr:rnber) is tJ:e parameter of RRGEL and (line number)

is the nuniber of the line in the source text of the last statemenE

executed in a module which was compiled with the TR option.

When the long version has been speeified, in addition to the above,

register and memory dr.mps are output on filecode /2 in the
following manner:

A1 A2 A3 A4 A5 A6 A7

8C6o 0004 789c oo85 ESAC 3FDo ooBo

A8 A9 AlO A1I AL2 A13 A14

885A 8F54 æ,b I28E Dæ2 3FDC 3FD4

4/1



STACK DUMP

D2CO

D2DO 789C

D2E'O 88D4

D2FO OOEF

D300 0000

CR AREA

8F54 FACI

88C2 00EF

7A88 0001

D308 789C

3FCO

3FDO

oooo

F9C1 7884 0001 D2û FACI 7Bî4

The dump format is the contents of eiqht memory words preceded

by the address of the first word. In the above example the
stack starts at D3OC and the contents of this word is a pointer
to itself. fhe stack is printed to the lowest point used so

far 1n tJle program.

CRÀ'REA is the control Routine and fortran interphase stack
pointed to by Al4. ft is only printed if it is in use.

For a description of the stack and register usage see "The
RTL/2 Run-Time Environment on the philips pgoo series" RTt /z
Ref. ag (5122 991 28111)

FACI

D2E 8

D304

oooo

B9s6 0085

^îÉa 
à 

^ôUZE Z ITJÔZ

79AB 79A7

D30c 4278

oooo D2D2

ooo2 0005

O5EF FACI

202c 4278

D30C

4/4



4. )

Az,'l

4.1.2

STREAM r/O

Character stream I/O is supported according Lo the standards

defined in RTL/2 Ref. 5, "RTL/2 Standard Stream r/o".
The character and formatted I/O procedures defined therein
are supported in the DOS implementation by procedures for
opening, closing and switchinq I/O channels.

Standard. Library Procedures

The following formattingr proced.ures (defined in"RTL/2 Standard

Stream I/O", RTL/2 Ref. 5) are available in source and

object form:

FREAD, Fh]RT,

IREAD, IWRT,

RREAD, RIùRT,

TREAD, TVÙRT,

FWRTF,

IWRTF,

RWRTF,

NLS, SPS

Errors from these procedures are detailed in RTL/2 Ref. 5.

The individual source Files supplied may be used to create
an object library.

Stream I/O Support Procedures

These procedures permit the user to perform simple stream

input and output without deÈailed knowledge of the DOM Library
and the DOM monitor.

The standard I/O fo::natting procedures in the RTL/2 strea"m

I/O library are supported as are the procedure variables IN

and OUT in SVC DATA RRSIO.

4/5



4.1.1 Communication wit]: stream I,/O Support Procedures

The parameter and result mechanism of RîL/2 is used

exclusively for communication between the user and the
support procedures.

4.1.4 Stream I/o Support Module

When buildj-ng proqrams using I/O support, tJre user must

also include the stream I/O support module, RRSIO. This
may require regeneration to cover a greater nurnber of
streams in sj-multaneous use; the standard. module as supplied
is set for 8 streams.

The Detailed Specification

Appendix fI contains detailed specifications of the stream

I/O support module and the errors detected. An example

program witlr the full sequence of input, compilation, assembly,

Iinking and running conmands is also included.

4/6



4.4 COMTROL ROUTINES

The control routines
RTT,/2 such as array

provide out-of-line functions in
bound checking and type conversions.

AA1

Ttre PSOO control routines will not in general operate in
other environments.

Using control routines

Provided all the control routines are in the object library,
the individual routines required by a progrFm are picked out

automatically by OrE when ttre program is linked.

For further informatj-on see "TLle PITL/2 Run-Time Enviroruoent

on the Phllips PSoo series", F{rL/2 Ref . 69 (5lzz 991 2e1y)

4.4,2 Errors detected bv the control routines

Errors detected by the control routines (which are normally

unreeoverable) using RRGEL.

Significance

Stack overflow (on procedure entry it is
found ttrat there will noÈ be enougth stack

space to complete ttre procedure).

Label error (GOTO out-of-scope LABEL).

ERL out of scope.

Array bound error.

Fixed point overflow (when OPTION OOV is in use.1

Floalingr point overflow.

Fixed poinÈ overfl-ow on conversion.

4/7



AA

+.). I

USING MONITOR REQUESTS (LKMS)

Monitor Requests in RTL,/2

SVC procedures are provided to enable the user to make

Monitor Requests without having to drop into code. l,lith the

exception of the procedures for getting and releasi-ng dynamic

buffers, a knowledge of ttre operating system is necessary

l-n qpi- rrn i-he r-nmmunication blocks racrrri rerl -

Procedures for getting and releasing dynarnic buffers

fhere are t\^/o procedures in the module RRBUFF.

Their use does not require any detailed knowledge of the operating
system but the following should be noted.

The procedure does not set ar. array length word and

so the procedures can only be used in the systems

language and care must be taken to avoid breaking array

bounds.

2. When a buffer is released the gap in memory is not
closed up ald a future buffer request will only succeed

if there is an available gap large enough to accept iÈ.

tlrere is not enouqh room for a reguest an unrecoverable errat
occurs.

Tfre procedures are defined by

EXT PROC (INT) REF ARRAY BYTE RRGBF;

EXT PROC (REF ARRAY BYTE) RRRBF;

and

for getting and releasing buffers respectively. The parameter

to RRGBF is the length of buffer required in bytes (remember to
add 2 bytes for the array-lengthr- word).

/q9

l.

tr
65

4/e



Note that if the user wants a mode structure in dynamic

memory, the procedures may be defined in the user's module with REF

MODE instead of REF ARRAY BYTE. The error this wiII cause in Linkage

Verification may be ignoled.

4.5.1 Exa.mple of use

PROC USEBUFF;

REF ARRAY BYTE P:= RRGBF (1O2) t

P (60) :=O; ? cÀN USE P (1) TO P (fOO) s

^+^...çU9...

NRRBF (P) ;

EIIIDPROC,

Note that using P (lOf) or P (lO2) will destroy the buffer area
chaining links.

4. 5.4 ottrer Monitor Requests

These are invoked by SVC PROCs. Vrlhen the compiler encounters an

SVC Procedure, in-line code is qenerated which places the
first parameter in 47, the second parameter in AB and ttren

does an LKM with data equal to tJ:e value of a synbol defined
in the Base Program. If only one p€rrameter is specified it is
put in A8. If the procedure is defined as returning an Interger
result, the contents of A7 after the I-,KM are returned. Ihere is
a list of procedures arld their LKl4 numbers in Appendlx I.

The procedures are defined in the user's prograrn as for example:

SVC PROC (INT, REF INT) RRTfME;

The alrove procedure will generate an II(I'I 17 (rrnder DRlI,t) and

Èhe procedure is defined in the Base Program by the assembler
statement;

RRTIME EQU L7

4/e



Monitor Requests not included

The SVC procedure table in tlre Base Program covers all LKIvI

requests at time of writing. Extra procedures to cover

user written IXMs can be included simply by including the

name and the LKM nwtber in the Base Program in the form

(name) EQU ( rrca nr:mber )

LKM requests with scheduled tabels are not included in the

basic package because ttreir use will normally corrupt the

run-time stack. However if a user wishes to use scheduled

labels after takingr the necessary precautions, he can define

the neqative LIG'I nurnber as above.

4.5.6 Examr:Ie

To set the time under DRT!'I .

SVC PROC (INT,

MODE TII,ÎE (INT

DATA IIMEDATA;

TI}48 T;

ENDDATA;

PROC GTIME0;

RRTIME (1,T.HOUR) ;

ôi^

ENDPROC;

TCOMPONENTS OF T NOW CONTAIN TÏ.MET

REF INT) RRTIME;

HOUR, MINUTE, SECOND, TENTHS, FTFTYTHSI CTIME);

4/10



PHILIPS PSOO DOM RT.L/2 USER MANUA],

SECTTON 5

-

USER PROGRAM GENERATTON

CONTENTS

5.1 INTRoDUCTION

5.I.1 other Target operating systems

5.2 coI,PrLATroN AltD ASSEMBLY

C. 7 Y rrrurar-
) . ) LII\ 

^rI\ 
u

5,1.L Non-overlaYed Programs

5.1.2 ExamPIe

5.t.t Overlayed programs

5.1.4 stack

PA@

5/o



R'l TNTRODUCTION

This section describes in detail the process of compilation,
assembly and lirking of a program wittr the run-time support
software described in section { in order to produce a

runnable load module.

Other Target Operating Systems

Generation of operational programs for operaÈing systems
other than PSOO DOM is not dealt with here. Users wJ"shing

to run their programs under other operating systems should
consult P(lL/z Ref . No. 69 "fhe F.TL/2 Rr:n-Time Environment
on the Philips PSoo series" for guidance on implementing their
own support software. Note arso t]laÈ the DoM control routines,
base program etc., are not interchangea.ble wittr other availabre
implementations of RTT,/2 (e.g. fBM 37o), and may need, mod,ification
for oÈher systemsr e.9. I4ÀS though they may be used as a basis for
user-written support software.

5/L



COMPILATION A}ID ASSEMBLY

The RIL/2 compiler is described fully in section 2.

output from the compiler will normally be assembled

with t}le DOM assembler, although other compatible compil-

ation,/assembly environments may be used. The catalogued

procedure $RTL automatically assembles the output if the

compilation is successful.

5/2



5.1 LrNKrNc

5. J.L No-n overlayed prograrns

Provj-ded all the run-time software (Base prograJn, Stream I/O,
etc is in either the system or the userts object library,
the Philips Linkage Editor will pick out the required modules

and link them with the user's prosram.

Note that the start address in the base program, RRSTR, should
be used as a pararneter in the OLE command.

5.1.2 Example

A user has a module JOBI in his object library which calls
procedures contained in JOB2 and JOB3, also in his object
library. The run-tj:ne software in the system library. The

following corunands are used to link the modules.

INC JOB1

oLE M, RRSTR

The overlay linkage editor will pick out JOB2 and .TOB3 from

the user library and the relevant control routines etc from

the system library.

For a full description of the comnand.s and parameters consult
the relevant Philips Progra-umer's Reference Dates for your
machine.

5.1.J Overlayed programs

The overlay structure is defined using INC and. NOD comnands as

j.n the Phr-ilips documentation. It should be remernbered that
thestreem I/O control module, RRSIO, although it uses dynamic

buffers, has various flags set within the module itself and so,
if different paths are usj-ng streâm I/O, RRSIO should be

included at the root of tlle paths.

5/3



The stream formating library and the control routines

can be picked out as required by the overlay linkage editor'

5.5.4 stack

The size of t]À e run-Lime stack is defined in the base program'

RRBPG, bY

STLEN EQU N

where n is the size in bytes. The stack size can be changed

by modifying n and re-assenbling tlr-e base P'rograrn'

There is an SVC DATA brick

SVC DATA RRSTK

TNT STKLO,

STKLIM'

WSPLO;

ENDDATA;

which contains, the lowest point so far encountered in the

proçlraln,thelowestpointinthestackandthelowestpointinuse
at any particular moment' Note that addresses greater than

32K bytes will be stored as negative nr:mbers'

RRSTK is updated by control routine R:ROI'

5/4



PHTLTPS PSOO DOM RTL/2 USE-R !4ANUAL

APPENDIX I

SVC PROCS

CONTENTS

I. I SVC PROCS

T.2 USE OE SVC PROCEDURES

PAGE

1/1

r/o



r.1 SVC PROCS

RRIOLKM (INT, REF BYTE) ;

LKM I
I/O on a peripheral device.
Note: most I/O operations, with the nota-ble exceptions

of the Extended Data Management Package, are

supported by the stream I,/O, described in Appendix fI.

RREXIT (INT, TNT);

LKI{ 3

Exit from a program.

RRGBF (INT) REF'ARRAY BYTE;

LKM 4

RRRBF' (RET ARRAY BYTE);

LKM 5

Both described in 4.5.

RRPAUSE (INT, REF BYTE);

LKM 6

Pause.

RRCNABT (REF

LKM 7

Keep control
Note: RTL/2

INT , LASEL) ;

on abort conôitions.
labe1s consist of 3 words.

RRLDSEG (TNT, REF INT) INT;

LKM 9
Load and segment.

Note: Not neederl when OLE

RRWATT (REF BYTE);

LKM 2

Wait for an event.

LlL

provided.



RRCNTIM (REF INT, REF INT) INT;

LKM lO (Pnru only)
Connect a program to a timer.

RRDCTIM (INT, REF INT) INT;

LKM 1l (DRTM only)
Disconnect a program from a tlmer.

RRACTV (REF' INT, REF TNT) INT;

LKl4 L2 (DRTM only)
Activate a progran.

RRSWITCH (INT,

LKM 13

Swi-tch inside
Note: second

INT);
(DRTM only)

a software level.
parameter not used.

RRATDEV (INÎ, RET INT) INT;

LKM L4 (DRTM only)
Attach a device to a program.

RRDTDEV (REF INT) INT;

LKM 15 (DRTM only)

Detach a device from a program.

RRTIME (IMI,

LKM L7

Get time.

REF INT) ;
(DRTM only)

RRE\TENT (REF BYTE);

LKM 18 (DRTM only)
Set an event.

RRCNLEV (IMI, RET TNT) INT;

LKI,I 20 (DRTI,I only)
Connect a program to a software level.

r/2



RRDCLEV (INT, REF INT) INT;

LKM 2L (DRTM only)

Disconnect a program from a level

RRWTIM (REF INT) TNT;

LKM 22 (DRTM only)
lVait for a siven time.

RRASG (RET INT) TNT;

LKM 23 (Pntu only)
Assign a file code.

RRDEL (RET INT) INT;

LKM 24 (DRTM only)
Delete a file code.

RROPMSG (R€F INT);

LKM 25 (DRTM only)

Read unsolicited operator message.

RRCANREQ (REF INT);

LKM 26 (DRT!,I only)

Cancel request for an unsolicited operator message.

r/3



T.2 USE OF SVC PROCEDURES

The use of SVC procedures is e>çlained in Section 4.5.

r/4



PHILIPS PBOO DOM RTL/2 USER MANUAL

APPENDIX ÏI

SIREAM I/o suPPoRT SPEcIFIcATIoN

CONTtsNTS

II.1 PROCEDURE SPECTFICATIONS

LL. Z

II.1.l Basic Procedures for opening and closing
II.1.2 Example

II.1.3 Effect of opening and closing a stream

EX1RA FACILTTIES OF THE STREAM I/O PACIqGE

PAGE

rr/2

streams Tf/z
rr./3
T-r /2,

fi/5

-+ lr
LL/ )

rr/s
rr/5
rr/6
r.r/6

fi/e

fi/9
rr./9

1T/LL

T1 11'l
LLI LL

T1 /11

fi/LL

L!.2.L

rr.2.2
fi.2.3
Tr.2.4
rT.2.5

Single Buffering
Supplying an I/O order
Default r/o orders

Supplying I,/O orders - control biÈs

Supptying I/O orders - functions

rI.3 FILE CONTROL PROCEDI]RES

II .J.I

LL. 5. Z

II.4 END OF

rr.4. I
r.r.4.2
rr. 4. 3

Procedures available
Orders available

STREAM

EOS Character

End of strean on input
End of stream on output

tï/o



CONTENTS COI'TTINUED

II.5 CONFIGURATION OF STREAI,I I/O PACKAGE

PAGE

fi/L3

rr/L3
rr./L3

fi./Ls

Tr/L5

r.r/L6

IJ-.O

II.).I

LL. ) .2

ERRORS

rr.b.l-

rr.6.2

Maximum Buffer Size

Number of Streams

Error Reportings

Error Correction

n/L



II.1 PROCEDURE SPECIFICÂTIONS

If.I.l Basic Procedures for opening and closing streams

fhere are four basic procedures, defined in the userrs

module bv:

EXT PROC (]NT) PROC () BYTE RROPI;

EXT PROC (INT) PROC (BYTE) RROPO;

EXT PROC (PROC 0 BYTE) RRCLST;

ExT PROC (PROC (BYTE) ) RRCLSO;

RROPF and RROPO J RROPI and RROpO

RROPF and RROPO open input and output streams, RRCLSI and

RRCLSO close input and output strearns.

The parameter to RROPI and RROPO

device or temporary file. For a
the devices consult the relevant
Data'r for your machine.

is the file code of the

list of the filecodes for
Philips "Prog'rannmerts Reference

The filecode supplJ-ed may be assigned to any device before

run-time but if it is not assigned at all a run-time error
will occur.

RROPI and RROPO return a procedure variable which is used for
input or output. This procedure variable must be supplied

to RRCLSI and RRCLSO to close the strea.rns.

Although there are cases where it is not necessary to close a
stream before exiting from a program it is strongly recommended

to always close a stream when it is finished with. If a disc

file contains strange data after a run it is proba-bly because

the stream has not been closed.

rr/2



II.l.2 Example

A program to ouÈput a message on the

line printer.

IDENT OUII,IES

IITLE STREAM I/O EXzu,tPLE;

SVC DATA RRSIO;

PROC OBYTE IN;

PROC (BYTE) OI]II;

ENDDATA;

EXT PROC (INT) PROC (BYTE) RROPO;

E}(T PROC (PROC (BYTE) ) RRCLSO;

E)ff PROC (REF ARRÀY BYTE) TI{RT;

LET NL = Io;

system console and

ENT PROC RRJOBO;

PRoc (BYTE)

OIII: = SCOU| ;

RROPO (HEX EF),

RROPO (2) t

SCOIII:

I,POUI :

TwRT ("#ua#svsrul4 coNSoLE {N:',$" ),
OUT:= LPOUTT

TwRT (" #lrr.#r.rNE PRTNTEn f,vr.S") ;

RRCLSO (SCAUT);

RRCLSO (LPOUf);

ENDPROC;

II.l.3 Effect of opening and closing a strean

ltlhen a stream is opened the following takes place:

I. Buffer space is obtained from the dynamic

buffer area.

2. Input Disc files are rewound, except

rr/3

logical fil-es /nO ana /An



II.1.3 Cont...
When an output stream is opened,

No line feeds or page throws are issued., so if the program

is writi-ng to the line printer for example, a line feed
shourd be issued before writing to avoid overprinting the
program header.

lVhen an input stream is closed

1. The dynamic buffer is released.

ltlhen an output stream is closed.

t. The last buffer is output.

2. An :EOF mark is written.

3. Disc files are rewound., except l-ogical files /nO ana /nn.

4. The dynamic buffer is released..

1r./ 4



LL. Z EXTRA FACILIT]ES OF TI]E STREAM I/O PACKAGE

11.2.1 Single Buffering

LL. Z. Z

fhe standard stream opening procedure for output streams

generates a double buffering mechanism. There may be cases

when a user would sooner have some extra memory rather than

the extra speed of double buffering. For these cases an extTa

procedure, RROPOS, is provided which is identical to RROPO'

except that it qenerates a single buffering mechanism. A

stream opened by RROPOS is closed in the normal way by RRCLSO.

Supplying an I/o order

It is possi-Jc1e to supply an I/Q order as part of the pararneter

when using RROPI or RROPO. Before doing this, the user

should be farniliar with the effects of different orders, as

described in Philips "Progrannmerts Guide", Appendix C

Peripheral Input/Output.

The parameter to RROPI or RROPO is an integer of 16 bits whereas

the file code is a byte of I bits. The first I bits of t}te

parameter may be used for all t/O order. This means that tlte

'S' bit cannot be set. Ttre effecÈs of the different orders on

tl.e stream r/O are e>rplained fully later in this section. There

are some subtle differences to ttre use of the orders in

an ssembler environment.

IL.2.3 Defau.lt I/O orders

The defaulL I/O order for RROPI is HEXB2, standard read with
wait bit set.

fhe default order for RROPO is IIEX 05, stand.ard write with wait
bit noÈ set.

n/s

Thrus RROPO(2) is equivalent to RROPO(IEX 0602)



11.2.5

Supplying I/O orders - Control bits

Cannot be set.

V'l bit (lst bit of parameter)

For output channels will cause a wait whenever a buffer is
output. If the bit is not set the output procedure will take

care of synchronisation. If ttre bit is set there is little
point in using the double buffering procedure..

For input channels the wait bit should normally be set. If
the bit is not seL ttren the system will read in a fresh buffer
as soon as the last character in the old buffer has been passed
to the input stream.
To make the best use of this facility, the TREAD procedure

should be used with NL as a terminating character to read a

whole buffer in at once. The next buffer wiII be read in from

the device while the buffer in memory is being processed.

R bit (2nd bit of parameter)

It is not possible to process abnormal conditions in the user
program, however if the status word LAND IIEX ID3 #O tne input
procedure will return the end of stream character IIEXSO and

the user may wish to use the R bit in conjunction r,rith tlris.

Supplying I,/O orders - functions

Functions occupy bits 3 to I of the para.meter.

Basic Read (1)

Characters will be read

significance attached to
reading binary data.

untll the buffer is full. No special
control characters. May be used for

r.î/6



Basic Write (5)

The default order. The buffer is output whenever the buffer
is fu]l cr a control character is encountered. The character
NL = lO will cause a new line,carriage return whatever the
device is. The character VT = ll may be used to print a buffer
wittrout moving the printhead, for example when an ans\^rer is
reqriired on the same line on the console.

Basic Write (4)

This is a dt:rffny order and wil-l cause the control characters to
be output as any other. fhe buffer is output when it. is fuIl.
It is used for outputting binary data. ft should not be used

on the printers as it will cause random form feeds and line
feeds.

Standard Read (2)

The default ord.er. For a full description of its effects see

Philips "Proqrammerts Guide" .

Standard Write (6)

See ttProgirammerrs Guidett.

Can be used, for example, on printers if a control code at
the start of a buffer is required rather tJ.an a control
character. This use should be avoided as it does not conform
to RTL/2 Standards.

Can also be r:sed to punch

CR - Rubout at the end of
r-r' - cR.

Ihe character VT = 1l should be

wittr ttris order.

with the special sequence LF-XOFF -
a record. Basic write only outputs

fi/l

used to signify end of record



Object Write (7 and B)

See "Progranmerrs Guidett.

ft should not be necessary to use these orders.

Oraers gre"ter th"n 8

These should not be used when opening a stream. Their use

is described in the next secti-on.

fi/8



II.3 FILE CONTROL PROCEDURES

II.3.l Procedures available

There are two file control procedures availabl_e, defined
in the userts module bv:

EXT PROC (INT) INT RRORDI, RRORDO;

RROF'DI is used for the file connected with the current input
stream and. RRORDO for the current output strean. The paraneter
i-s the order specifying whi-ch function is required,. Ttre

result is zero except where order HEX 30 is specifisd çhsn the
result is the ASCII value of the characters representing ttre
device. Note that this order is simulated to avoid destroying
the control b1ock.

A check is made that the function is compati-ble with the stream,
for example, 'write EoF mark' is not arlowed on the input
stream. No attempt i-s made to make sure tJ- at tLre order is only
issued to rerevant devices, for example, rRewind to load pointl
may be issued to a line-printer even though it may block the
system. Remember to output the current buffer, if necessary,
by outputting a control character before using these procedures.

II . 3.2 Ord.ers available

ÊmX14 Skip fomard to EOS mark

IIEXI6 Skip forward to EOF mark

IEX22 Write EOF mark 1
rEX24 Write EOV mark FO* sÈrearn only

I
IEX26 Write EOS mark J
mX3O Return device
HEX3I Rewind to load point
HEX33 Backspace one block
HEx34 space one brock forward (not alrowed for cassette)
HEX36 Skip backward to EOF mark

HEX3B Unlock

fi/g



rr.3.2 Cont

For further informatlon see philips "programmerts Guid.e".

Note the functions carried out by the Stream openj_ng and

closing procedures in Section I of this appendix.

rr/Lo



TT.4 END OF STREAM

II.4.I EOS Character

On input, the end of stream is signified by the RTL/2

character EOS = HEX BO being returned, and IOFLAG being set
to 2. End of stream is caused. by :EOS, :EOF and any

conôition which leaves STATUS IÀND HEX fD3#O.

On output, the EOS character has no siqnificance and is
out'put as any other. It is not treated as a control character.

II.4.2 End of stream on input

It is possible to read beyond the end of stream. If this
is not desired., ttre user should look for EOS as in

WHILE CHAR#rfiXBO DO etc.

or he should check IOFLÀG for 2 at the end of every line
as in

WHILEIOFLAG=OD
TREAD etc.

IOFLAG is reset to O when a new buffer is successfully read. For
binary streams the user should check for IoFLAG=2 after each character.
Note that if data is read from the consoleeither by an Rf,5,/2

program or a system program, the end of stream is signified by

typing :EOF on a new 1ine.

II.4.3 End of stream on output

Normally end of strean is signified sinply by closing ttre strea$.
the user may close tJre stream himself using the control
procedure to write an :EOS or :EOF, if, for example, he does not

TT/1 L



II.4.3 Cont...

want the fj-le automatically rewound.

properly closed by simply outputting
procedure must be used.

The file will not be

":EOF". A stream X/O

rr/L2



II.5

rr .5. I

LL. > .2

CoNFïGT.TRATION OF STREAM r/O PACi<AGE

Maximum buffer size

The buffer size for a file is set to the value returned
by DOM. The I/O module sets a maximum value for this
buffer and disc file buffers are alwavs set to ttris maximr:m

value.

To make the most effective use of the Qrnamic area as many

buffers as possible should be of the same size and it is
recommended to set the maximum at or less than the maximum for
a device. A good value is 136, the length of tJ:e line printer
and some consolebuffers. 256 may be chosen if cassettes are

used, T'he stream IrlO package wil} print long buffers on tf,iro

'linoq if naaoqqa^t

fhe maximum size n in bytes is set by

LET MAXB = n;

in RRSïO

The revised version should be macro-processed, compiled and

assembled.

Nrunlcer of Streams

The maximum nurnber of streams is normally
be d.ivided among input and output streams

8. These streams may

in any way.

sÈrearns open at one

the macro statements:

If it is desired to have more tl-an eight
time, RRSIO may be reconfigured. Change

l- -r
l_sntN B J and
F-

LsEr P 16_l

to the nurnlcer of streams and twice the number of streams

respectively.

tr/t3



LL.J. é UUIIL...

The revised version should be macro-processed, compiled and

assembled..

The number of strearns may be reduced in the same lray to save

space. Each stream has an overhead of L2O bytes.

Note that the macro-processor may run out of stack space

if the nr:rùcer of streams is 1arge, because of the recursive nature
of ttre macro-structure in RRSIO. See Section 4.

rT/L4



rI.6 ERRORS

II.6.I Error Reporting

Errors detected by the stream IrlO procedures are unrecoverable
and cause a call to RRGEL.

Error No. procedure Significance

No streams left.51

53

54

55

59

50

6T

63

64

65

RROPI

RROPO

RROPOS

RROPT

RROPO

RROPOS

RROPI
Rr.0P0
RROPOS

RROPI
RROPO
RROPOS

IN,RRORDI

OIIT,RRORDO

RRCLSI

RRCLSO

RRCLSI

RRCLSO

RROPI

RROPO

RROPOS

RRORDI

RRORDO

File code unassigned.

I1}egal d.evice for input orde r

fllegal d.evice for output ord.er

Stream not open.

Stream not open.

Stream already closed

Trying to close an unknown streâm

Trying to close an unknown stream.

No ôynamic memory available.

Illegal order for an input file.

Illegal order for an outpuÈ file.

7I

fi/L5

tz



II.6.2 Exror Correction

Error 5l is correcÈed by closing a stream alreadlz open or by

rebuilding RRSIO for more strea.ms. see II-4.

Error 53 is corrected by assigning the file code before
runnlng the program.

Errors 59, 6o are caused by using a strean after it has been

closed. using a stream before it, has been

opened, in effect, assigning IN or OIII to an

uninitialised. procedure variable, will leave

the program j-n limbo.

Errors 6L,63,64 should be self-evident.

Errors 7Lr72 are caused by illegal orders or orders such as
rwrite EOF| on an input stream.

Error 65 caused by RRGBF not finding a spare memory slot.
Can be corrected by closing stream.

TT/L6



PHILIPS PSOO DOM RTL/2 USER MANUAI

APPENDIX III

GENERATTNG THE RTL/2 LllrrLrTrES

CONTENTS

III. I

ITT.2

J-II. J

rrr .4

trLrL. )

INTRODUCTION

RTL/2 COMPTLER

III.2.1 Overlay

III.2.2 Command

LINI(AGE VERIFIER

Structure
IIIC

PAGE

lrr/I

Trr f a

rrl/ 2

rfi/2

ILL/ 5

-+t lÀLLLl/ +

r\.r/5

AUTOMÀTIC STREA.I4 SELECTION

STANDARD RRCIPD VALUES

1Lr./o



III. I INTRODUCTION

The RTL/2 Compiler antL lrinkage Verifier
are supplied in object form for building in the User's
environment. This Appendix covers the structure of these

programs.

TTT/L



ITI.2 RTL/2 COMPILER

III. 2.1 Overlav Structure

Ttre compiler is buitt by using the Overlay Description
Language faciliÈies provided by OLE.

The RTL/2 compiler can only be linked using OLE.

The overlay tree structure has 21 segrments including the

root seqment.

Each overlay segrment is loaded once (if at all) d.uring a

compilation. None of the back-end overlay segirnents will be

Ioaded when a compilation fails through front-end diagnostics.

ILI.2.2 Command file

The procedure $TREE will bujild the overlay structure and

run OLE. All tJle compiler modules should be in the same

userid, although fortran interface modules may be in
another object library specified by a parameter U. This
speeds up the access time for the object modules. Before

building, the user should make sure that RRCIPD contains the
required channel associations (See III.4).

Tr.r/ 2



IIJ-. J LINKAGE VERIFIER

This is built as a single overlay structure to rebuild do:

INC LVI

oLE ( parameters as desired > ' RRSTR

KPF /1, r.rnn

The linkage editor wiII
time routines. Before

the RRCIPD contains the
(see III.4) .

pick out LV2 and

linking, the user

required channel

the required run-

should make sure

associations

rrr/3



rrr.4

III. 4. }

AUTOMATIC STREAIVI SEIECTION BY THE CHANNEL INTERFACE PACKAGE

Ttre utility prograJns use module RRCIP as an Interface to
RRSIO. When t]le util-ities set up an I,/O stream they pass

a question to RRCIP which prints it on the console and asks

for the file code desired for this stream as in:

LÏSTING OF SOURCE TO?

However the file code may be stored permanently in modu1e

RRCIPD. In this case the question is not output and the file
is selected automatically. RRCIPD contains two arrays, ÏNCODES

and OUTCODES.

If an element is negative, the association is prompted at
the console. If the element is O, this corresponiLs to tltpingi

E9 to a question. i.e. a nul-I association. If the element
positive it is treated as the actual file code.

The channels are standard to all utilities

code

IS

INCQDES

I Conversational-

2 Source input
3 Not used.

OUTCODES

I
2

3

4

5

Conversational
Mli n nrr{-nrr{-

Report and error
List:Lng

Not used

The user could, for example, change OUTCODES (3) to output to
a VDU.

Note that if INCODES (f) = HEX EEr the catalogued procedure file,
then OUIICODES (4) is set to an integer read in from file HEX EE"

This means that the lisLinq channel can be specified by a

parameter in a catalogued procedure.

LLL/ +



STA}IDARD RRCIPD VAIUES

E"nr l. ho (-nmni Ior-..- --^..r----;

INCODES:: (nnX nn,HnX D{,O);

ourcoDEs,= (ulx ol , HEX BF t2 ,o,rrEX BD) ;

For the Linkage Verifier;

TNCODES:: (.FIEX EE,tlEX BF,O);

OUTCODES:= (HEX Ol ,Or2rOrO);

rrr/ 5



PHILIPS PBOO pOM R3l,/2 USER MANUAT

APPENDIX IV

SVC DATA BRICKS

CONTENTS

T\T 'I

T\t )

T\ 7 1

JI' A

INTR,ODUCTÏON

STANDARD RTÎ./2 SVC DATA BRTCKS

IV.2.1 Stream I/O
IV.2.2 Error Recovery

IV.2.3 Default Settings of

DOM EXTENSION OF SVC DATA

USER EXTENSIONS OF SVC DATA

Standard SVC DATA

PAGE

rv/r

rv/2
rv/2

LV/ J

rv/ 4

rv/o



IV.I INTRODUCTION

SVC DATA bricks are applicable only to multitasking
operating systems, where each task has a private copy and

procedures shared. by different tasks are able to automatically

access the appropriate area.

Strictly SVC DATA is not necessary witLrin the sinqle
program environment of DOM. However, the inclusion of the

standard SVC bricks greatly improves tlte ease of writingt
portable programsr and may be of particular interest to

users developing (and perhaps testing) prograJns under DOM

for eventual runninq in otlter environments.

The SVC DATA bricks have permanent space allocated in RRBPG,

which initialises register A13 to the address of the area and

defines the offsets for each brick name.

TV/L



tP"*"

TV.2 STANDARD RTL/2 SVC DATA BRICKS

The following bricks are as defined in RTL/2 Systems

Standards, and are given here for completeness only.

W.2.I Stream I/o

SVC DATA RRSÏO;

PROC OBYTE IN;

PROC (BYTE) OUT;

ENDDATA;

SVC DATA RRSED;

BYTE TERMCIT,

TOFLAG;

ENDDATA;

lV.2.2 Error Reqovery

SVC DATA RRERR;

IABEL ERL;

INT ERN;

PROC (IMT) ERP;

ENDDATA;

IV.2.3 Default Settings of Standard SVC DATA

On entry to RRJOB the base proqram will have set up the

following values:

IN:= RRIPF;

OfJIf : = RROPF;

TERMCH:= HEX BO; (end of stream)

fOFLAG:= O;

ERL points to start of RRGEL;

ERN:= O;

ERP:= RRGEL;

rv/2



T\7 2 DOM EXTENSION OF SVC DATA

The following additional bricks are included in the DOM

implementation.

SVC DATA RRSTI(;

INT STKLO,

STI(LIM,

WSPIO;

ENDDATA;

This block should not be modified by the user but. WSPLO

contains the lowest point of the stack reached in the
program and is of interest in assessing stack requirements.

SVC DATA RRERRX;

INT LINENO;

ENDDATA;

This block is used

is used, to record
by the control routines when tJre TR option
the last traced line number.

rv/3



IV.4 USER EXTENSION OF SVC DATA

Users irnplementing under other operating systems and wishing

to include their own extensions of SVC DATA for program

testing under DOM can modify RRBPG to include the necessary

êlttrâ qrlâôê- and definitions of further offsets.

rv/4



PHILIPS PBOO DOM RTL/2. USER MANUAI

APPENDIX V

MATI{EMATICAL ROUTINES

CONTENTS PAGE

\7 I

\t ')

\7 2

\7 A

ROUTINES SUPPLTED

ACCURACY

NOTES ON MATHEMATICA].

ERRORS

TECHNIQUES

v/2

v/4

v/o

vlo



V.l ROUTINES SUPPLIED

?he routines supplied are:-

EXT PROC (REAI,) REA], RSQRT;

returns positive root of a positive real nurnber.

EXT PROC (FRAC) FRAC FSQRT;

returns positive root of a fraction.

EXT PROC (REAT) REAT, RLOGE;

returns the log base e of a positive real nunber.

EXT PROC (REAL) REAI RLOGIO;

returns the log base IO of a positive real nr:rnber.

EXT PROC (REAI,) REAL REXP;

returns e to the power of a real nr:mber.

EXT PROC (REA],) REAI RSIN, RCOS;

returns sine or cosine of a real parameter in radians.

EXT PROC (REAI.) REAI, RATI.I;

returns the are tangent in radians of a real nurnber.

v/r



V.2 ACCURÀCY

p qôprrl

With NOIT=3 the error is less ttran IO-8 and is generally around
-glo -.

The error is given by

ABS ( (RSQRT(R) * RSQRT(R) - R) / (Z.O * R) )

Er c ôD rr,

With NOIT=4 the error is less than 6 x 1o-5.

The error is given by

ABS ((FSQRT(F) * FSQRT(F) - F) / (Z.O * F))

RIOGE, RLOG1O

The error is less than 2 x lO-9.

The error is given by

ABS (RLOGE (R * R) - 2 * RLOGE(R)) / (a.O * nr,OGE(R));

RE)@

-qThe error is less than I x 10 -.

The error is given by

ABS (R.E)aP(R) - RE)p (R * O.5) * RE)G (R*O.5) ) / (3.O * RE>@(R))

v/2



lgIN,Rcos

ltre error is of the order of lO-Y.

The error is given by

ABS (RSIN(R) * RSTN(R) + RCOS(R) * RCOS(R) - r) / S.O

Ttre error is of the order of IO-Y

The error is given by

aas(nanu Q.o*R/ (r-R*R)) -2.o*RATN(R)) / G.o *RATr'r(R))

v/3



v.3 NoTES ON MATHEMATICAT TECHNTQUES

RSORT

The nunrlcer is reduced to the range [f,t) using sequential btocks.

A linear approximation is made and the result is iterated a

a fixed nrunber of times using the Newton-Raphson formula,.

Un*l=t(Un+R/Un)

The exponent is dealt witTr separatly.

FSQry

A value N is found such that

c.2-2n <F <".r-2n+2 forN =o,L,2

A linear approximation is made in this range by

x=F.2N-l+c.2-N

and a fixed nurnlcer of Newton-Raphson iterations are performed.

Note that divisions by 2 is perfo:med by SRA l.

RI.oGE,RLOGIO

The formula used. is

rnx=Losf,z +24.3At *3 Au*? J.7 +.....
l/ , r tJ = X /6 lLl( l.

X+
The procedure u-ses sequenti-al blocks to reduce n to [,l)ana
the exponenÈ is calculated as E{n2. TTre coefficients are

modj-fied to reduce ttre error. RLOcr.O sinply multiples the
result at RT,oGE by LOG,^e.

la

v/4



RE)E

EIPT0P is

x ^Ioqe=2

chosen so

2ex

that overflow will not

,xLog 2e

to R1o9, e.So R is transformed

2

It first adjusts R to be E

of the sine function. The

expansions.

This j-s decomposed to N + y , lv lf I

^ R ^n ^v50e=z

Y is transformed to Y/2 * logo2

and Cody & Ralston's Alogorithm is used to

2n is calculated by a simple loop.

RSTN,RCOS

INTEG returns the parameter module
SIGTOP is chosen so that overflow

ScALESIN returns sin R'TÏ where

calculate 2Y.

frf
will not occur.

R € 7r.o,+ :.o]

t-r.o,r.o:l using tl.e periodic nature

sine is found usinq the Chebychev

RcoS(R) simply calls RSIN R +T1r1

RATN

The range is reduced to (O,l)

and then to (O,2-,f1)

In this area,convergence of the
accuracry, is rapid.

v/5

series, modified. to improve



\'A ERRgRS

Errors are recoverable'

Procedure

Negative ParameterRSQRT,FSQRT

Negative ParameterRLOGE,RLOGIO

Number too large

RBXP I Nur"ler too large

v/6



PH]LTPS PBOO DOI4 RTL/2 USER MANUAL

APPENDIX VI

ENVIRONMENTAL ERRORS DETECTED

BY UTILITIES

CONTENTS PAGE

VI.l GENM.AL VT/L

TABLE VI. I Unrecoverable Errors VI/2

VT.2 FATAL ERRORS VT/3

vr. /o



vr.l GENERAL

In adôition to error
certain environmental

supporting software.

ôiagnostics produced by

errors may be detected

These are described in

the utilities,
by thej-r

this appendix.

VT/L



TABLE VI.I UNRECOVERABI.E ERRORS

Error No. Meaning

I
L

I

)

Should not occur

Random Access disc file not assigned before

!(Un-'r'rme

9950

9955

9956

9965

9966

99Bo

999 3

9994

9995

9996

1
| 

,n"r,-d not occur

)

Errors that should not occur may occur as a result of recovery following

an earlier error. Their occurance should only be reported if they are

the first error in a run.

In addition, stream I/Q errors may occ\tr. Errors are usually caUsed by

files not being assigned properly before run-time.

vr/2



VI.2 FATAL ERRORS

Any of the errors

to abort, giving

'ria+aÂ in .Fah]ê VI .III> LCU

an RRGEL message.

cause the utilitY

vr/3



PHILTPS PBOO DOM RTL/2 USER MANUAL

APPENDIX VIII

SUMMARY OF ERROR NUMBERS

COMIENTS

VII.l INTRODUCTION

VTI.2 RRGEL REPORTED ERRORS

VII.3 UTILITY REPORTED ERRORS

PAGE

vlr/L

vrr/2

vr.r/3

VII/O



VII.I INTRODUCTION

This appendix is provided as a quick reference to aid
users in locating the sections in the manual containing
detailed error number description.

There are two categories or errors, those reported as

RTL/2 Errors by calling RRGEL, and those reported by some

other mechanism specific to the program involved.

vrr/L



VII.2 RRGEL REPORTED ERRORS

WARNING TLre user is reminded to adhere to the
recomnendations regarding error numbers

in"R..rL/2 Systems Standard.s, RTL/2 Ref . 4"

Error No. Source Reference Applicability

L ,2 ,4,5 ,
6r7

Control Routi-nes 4.4.2 All RTL/2 proqrams

Base Program At4 AIf RTL/2 programs

98,99 RRIPF, RROPF 4.2.1 ALL RT.L/2 prograrns

loo-103 Stream IrlO

Formatting
Procedures

KLLr/ Z

Systems

Standards

All RTL/2 programs

5r-71 Stream I/O

RRGBF

II

4.5.2

Programs using stream

r/o

9950 to
9996

Environment for
Rw./2 utilities

VI The RTL/2 compiler,

or linkage verifier

vfi/2



VII. 3 UTTLTTY REPORTED ERRORS

Error Identifier Source Reference

II

thru
î204

RTL/2 ComPiler

Front End

2.L.4

IJI

thru
B203

R'IL/2 Compiler

Back End

2.2.s

LINK ERROR I

thru
LINK ERROR IO

RTL/2 Linkage

Verifier

vfi/3


