i

RTL/2

P800 DOM RTL/2 User Manual

\RE THE OTHER PAR
STK (INT TOP, REF{ES

'N, REF ARRAY BY
INT, ARRAY (16) IN
TA RTLSYS; % TARS
PTR, CPTR, XPTHK
STRUCTURE. OF T¥
TTHE STACK..IT |
'‘6) BYTE HX:=% 02
; IF 1# NOL- AND I#
= (CELL-"LAST-LOCA
'+ RPTR ¥ 8 ;60 TOU!
=)45 BY—-Il TO O L

N1 EXCEEDS 271 TH ©
BLE (NOL) - RNAME (i
F# NL() , TEH MEZH
SELL-LAST = X -G |

J OF LI ,L2 ,LFAl
L ROC; ?oRETR.o W A
ANAME (REF LKCEL,

- X ‘YEL$EIFP> i
=|0 OR PTR =l21
OUNT := RTLLCT (O)
-=Qq7 THEN FLAG :
JTE THAT BB MAPS O
ET (43),; GOTO LOOF
SH: REWRN(LENG

() n () T 1

PHILIPS P800 DOM RTL/2 USER MANUAL

RTL/2 Reference: 73 Version: 7

Authors: A.P. Porter

G.C. Stevenson

Date: 14th March 1977

Philips Data Systems Publ. Nr. 5122 991 28112

©

Systems Programming Ltd.
1970
All rights reserved

_

SECTION

APPENDIX

PHILIPS P800 DOM RTL/2 USER MANUAL

II

IIT

Iv

VI

VII

INDEX

INTRODUCTION
THE RTL/2 COMPILER

THE RTL/2 LINKAGE VERIFIER

THE RUN TIME SUPPORT SOFTWARE

USER PROGRAM GENERATION

SVC PROCS (LKMs)

STREAM I/0 SUPPORT SPECIFICATION
GENERATING THE RTL/2 UTILITIES

SVC DATA BRICKS

MATHEMATICAL ROUTINES

ENVIRONMENTAL ERRORS DETECTED BY UTILITIES

SUMMARY OF ERROR NUMBERS

PAGE

1/0

2/0

3/0

4/0

5/0

I/0

II/0

III/O

IV/0

V/0

VI/O

VII/O

o/1

PHILIPS P800 DOM RTL/2 USER MANUAL

SECTION 1
INTRODUCTION
CONTENTS
1.1 RTL/2 UNDER DOM
Lo CONTENTS OF THE RELEASE PACKAGE
1.2.1 The Utility Programs
1.2.1.1 The RTL/2 Compiler
1.2.1.2 The Linkage Verifier
1.2.2 The Run Time Support

1.2.2.1 The 'Base Program'
1.2.2.2 Control Routines
1.2.2.3 Stream I1/0

1.2.2.4 P800 Interface Library

1.3 CONTENTS OF THIS MANUAL

PAGE

1/1

1/3

1/3

1/3

1/3

1/4

1/5

1/B

1/5
1/6

1/7

1/0

1/1

RTL/2 UNDER DOM

RTL/2 is a compact, easy to understand, machine independent,
high level systems programming language developed by ICI

and marketed by SPL International. DOM is a single-program
operating system developed by PHILIPS for the P800 range of

computers.

Because RTL/2 is a system programming language, e.g. has
part-word manipulation features as standard, it can be
regarded as a direct competitor to assembly language for
low-level programming. It is also suitable for writing
applications programs being simple, easy to learn and

lending itself to good structural design. It is pitched at a
slightly higher level than FORTRAN. Unlike many systems

languages, it supports real arithmetic.

The aim has been not only to supply a compiler, but to
incorporate many other features into a package of software
useful in generating systems. For this reason the package
contains two free-standing utility programs and several
items of run-time support software for the user to incorporate

in his own system.

The utility programs are released in object format together
with catalogued procedures for building the programs into

the user's system. The run-time support software is released
in source format so that the user may either modify it to
suit his own needs or use it as an example for a private

implementation.

We have tried to pitch our support at two levels. Because
DOM I/0 is complicated we have supplied a stream I/O
support package which hides the operating system almost

completely. If the user follows instructions he will be able

to write programs which perform I/O without having to

'learn' DOM at all. On the other hand, if the user needs

the full power of the operating system at his disposal he

can, once he has become familiar with the system facilities,
call upon the monitor directly from his RTL/2 program without
dropping into code. As with all independently designed,
complicated entities, the interface is not perfect, but with
two levels of compromise we hope to satisfy most reguirements.
The user may always write new interfacing software if he

wishes.

The host machine configuration must support the DOM operating
system. The limiting factor on core size is the compiler
which needs 20 K words. The RTL/2 software does not require
the P857 floating point instructions, because they can be

simulated by run—-time routines. The compiler can generate

floating peint instructions if they are available.

1/2

1.2 CONTENTS OF THE RELEASE PACKAGE

The RTL/2 system consists of two utility programs and a
number of items of run-time support software. The utility
programs are supplied in object format together with
catalogued procedures for building them on the host system.
The run-time support software is supplied in source, RTL/2

or assembler.

1.2.1 The Utility Programs

1.2.1.1 The RTL/2 Compiler

The compiler generates three types of output from RTL/2
source input. Firstly it generates assembler source from the
RTL/2 source input. Secondly the user may have produced

a line numbered listing of the RTL/2 source. Thirdly,

an output file which contains cross-reference information,
that may be used by the next program, the Linkage Verifier,

to perform inter-module consistency checks.

The compiler's syntax analyser is identical to that utilised
by all other RTL/2 compilers, guaranteeing that there is
only one legal version of the language. Most of the code
generation section is common to other RTL/2 compilers
generating P800 object code,so a module compiled, say, on an

IBM System/370 will be compatible with the P800.

The Compiler is described in Section 2.

1.2.1.2 The Linkage Verifier

This program is used to check that references between

compilation modules are consistent, i.e. that ENT and EXT

1/3

brick specifications match. To exploit it, the compiler must
be used to generate cross-reference files for every module
which will ultimately be link-edited together. These cross-
reference files are submitted to the verifier, which performs
the check and prints relevant diagnostics if a mis-match is
found. The RTL/2 compiler performs intra-modular consistency
checks, while the linkage verifier enhances the error
detection facilities by performing inter-modular checks

across separately compiled modules.

The Linkage Verifier is described in Section 3.

The Run-Time Support

There are a number of items in the package. Some of these are
concerned with the fundamental RTL/2 environment and are

mandatory. Others may be used as required.

1/4

1/5

le2e2.d

1w2:22

12243

The 'Base Program'

This is constructed from modules performing a variety of
functions. The primary function is that of initialising the
stack for a task prior to entering the RTL/2 Compiler
generated code. The program is entered directly from
the operating system when a program is run, and returns

control to the monitor when the program exits.
The Base Program performs various initialisations and provides
system standard functions such as RRNUL and RRGEL. Section

4.2 describes the base program modules in detail.

Control Routines

These provide intimate run-time support to the compiled
object code. Operations which would be too bulky

as in line code are performed by the control routines.
Procedure entry and exit, global GOTO's, array bound
checking and instruction simulations are the main categories.
The latter is a particularly important area since the
compiler can generate code to handle various operations in
line or by control routine call. Provided the routines

are in the object library, they are selected automatically

by the DOM linkage editor.

The use of the control routines is described in Section
4.4. Further technical information is contained in RTL/2

Reference 69, The RTL/2 Run-Time Environment on the Philips
P800 Series.

Stream I/O

RTL/2 Standard Stream I/O (ref. 5) specifies a mechanism for

character stream I/0 and define a set of formatting routines

1.2.2.4

based on it. This set of procedures has been augmented
by a set peculiar to the DOM system for opening and closing

files.

Stream I/O is introduced in Section 4.3 and Appendix II
describes the procedures in detail. It is a useful package
since the basic facilities it provides makes DOM easier

to use, especially for the newcomer to DOM.

DOM Interface Library

The stream I/0 support package is designed to give the user an

easy way of performing I/O operations. Obviously, the

implementation will not necessarily be very efficient

and is not intended to cover every user requirement. Non-I/0

operations are not supported at all. For this the user
must go to the operating system more directly. To help him
to do this without having to drop into code, a library of
RTL/2 procedures has been created which call the operating

system directives on a one-to-one basis.

In order to utilise these procedures sensibly, the user
must be familiar with DOM. The use of RTL/2 cannot hide the
underlying complexity. Section 4.5 contains a description
of the interfacing philosophy and Appendix I describes

each procedure in detail.

1/6

1/7

CONTENTS OF THIS MANUAL

Each program in the package has a section of its own.
This contains a general description, a specification of
its inputs and outputs, including error messages, and

operating instructions undexr DOM.

Run-time support has a section to itself. Most of the
technical details have been put in appendices to enhance

clarity.

Finally, a section has been devoted to user program

generation.

PHILIPS P800 DOM RTL/2 USER MANUAL

SECTION 2

THE RTL/2 COMPILER

CONTENTS PAGE
2 sk GENERAL DESCRIPTION AND FRONT-END INFORMATION 2/1
2.1.1 Description 2/1
251:2 Front-end Restrictions 2/2
2.1.3 Front-end Error Mechanism 2/3
2.1.4 Front-end Failure Messages 2/6
2.2 P800 BACK-END INFORMATION 2/10
2:2.1 Options 2/10
2.2.2 CODE Sequences 2/12
2 23 Back-end Restrictions 2/14
2.2.4 Back-end Failure Mechanism 2/14
2.2.5 Back-end Failure Messages 2/15
2.2.6 Hints 2/16
253 CONFIGURATION AND SIZE LIMITATIONS 2/17
2.3.1 Installation 2/17
2.3.2 Source Module Size Constraints 2/17
2.4 RUNNING THE COMPILER 2/18
2.4.1 Command Formats 2/18
2442 Command Parameters 2/18
2.4.3 Action of the command file $RTL 2/19
2.4.4 IDENT statement 2/20
2.4.5 Example 2/20
2.4.6 Workfile 2/21
2.4.7 Environmental Errors 2721
2.4.8 Report Format 2721

2/0

2.1 GENERAL DESCRIPTION AND FRONT-END INFORMATION

2.1.1 Description

An RTL/2 Compiler is a program {written in RTL/2) which accepts
as input modules of RTL/2 text and produces some form of object
code (machine code for assembly or binary for direct loading or
linking) for a particular machine - the object machine - on

which the modules are to be run.

The machine on which the compiler itself is running may or may

not be the object machine and is referred to as the host machine.

An RTL/2 Compiler is formed from four major parts, brief descriptions

of which are given below.

Front-End

The front-end is a machine—-independent set of modules which performs
all the necessary syntax checks on the source text and creates a
version of the module in a machine-independent format. It produces
a list of error messages and other relevant information. Only one
version of the front-end is required to compile RTL/2 on any

host machine for any object machine.

Back-End

If no errros are discovered by the front-end, its output is passed
to the back-end which produces the object code program and which
may optimise the code. It is independent of the host machine,

but is clearly dependent on the object machine and may also be
dependent on the particular system on the object machine under

which modules are to run.
Interface
This collection of modules provides a communication area between

the front-end and back-end, and means of accessing the various

data relating to the compilation. In addition to specifying

2/1

various table sizes, an implementation can use the host
machine's capabilities to organise the data and access to

it in an efficient manner. This compiler contains a version

of the interface the restrictions of which are described in the

following pages.

Base

The base program is not part of the compiler but controls the
running of it, calling the various phases and performing any
overlaying. It creates the necessary environment for the
compiler, including the provision of I/O procedures, file
handling for source text and object code, the presentation of
compile-time options to the compiler and the presentation

of the error messages and other information to the user.

Front-End Restrictions

The following limitations (mainly of size) are imposed by the
front-end. They will not normally cause any problem for the
average program. Further restrictions are imposed by

particular implementations and details of these may be found

elsewhere in this document.

i) Name . maximum of 31 characters

224

ii) Constants . a) maximum integral value is 2 -1
maximum of some 67 significant decimal
digits
b) -128<number of decial places - exponent <127
c) -128< binary scale < 127

iii) Options . integer key must be in range 1,15

iv) Arrays : a) maximum dimension is 16

b) maximum bound is 32767

v) Repetition . must be in the range 0,32767
factors
vi) Blocks . a) maximum number is 255

b) maximum depth of nesting is 15

2/2

2/3

2+1.3

vii) External : maximum number of EXT bricks referenced

References from within a brick is 50

viii) External : maximum number of distinct MODE names used
Specification in an externally known brick is 15

ix) Security : some scope checks cannot be performed

absolutely and potential danger can only

be warned
Other restrictions involve the maximum depth of nesting of
statements, the complexity of expressions and the complexity

of modes, but no simple rules can be given.

Front-End Error Mechanism

The error messages produced by the front-end are intended to be
self-explanatory and to enable a syntactically correct module
to be produced with a small number of compilation runs. For
each error detected, two pieces of information are generally

given:

i) The line number on which the error was detected; this line
count includes blank lines. This line number should be
exact, but inaccuracies can occur when the failure is detected
at a newline character or in a complex statement or expression

spread over more than one line.

ii) An error number and/or an error message. This identifies
the nature of the failure. A table of numbers and corresponding

messages is given below.

Three types of failures are distinguished:

I) Catastrophic Errors: as the name implies, it is not feasible
to continue attempting to compile, and processing of the module
is aborted. Clearly only one such message can occur. Such

messages indicate an internal compiler fault or a violation

of some size limitation. Normally only the line number and
message will be given. It is important that internal errors
are reported to the RTL/2 support team. A copy of the source

text and the error and line number will suffice.

II) Program Errors: this is the main class of error. The compiler
takes some recovery action and continues to process the module;
but entry to the back-end is inhibited. As the front-end is
a multi-pass process, the recovery action may give rise to
side-effect errors later, but detailed consideration of the
recovery action should only be necessary when an error message
cannot immediately be understood. The general philosophy here
is to reduce to a minimum the number of side-effect or
repeated errors whilst enabling the compiler to proceed

safely and report as many errors as it can find.

III) Warning Messages: these can be suppressed by the use of
suitable options (but this should only be done if really
necessary) and do not inhibit compilation; no recovery action

is necessary.

Recovery

Various recovery actions are taken for program errors (II above;;
these normally involve ignoring the subsequent source text until
a suitable re-start point is found. In particular matching
keywords are used in this, and an attempt made to ensure that
matching is complete by inserting any missing keywords. It is
possible that this will be done at the wrong point and this may

lead to side—effect errors.

The broad classes of recovery action are detailed below and
referred to by their number in the later table of failure
messages. Where more than one is given (or "various") the
recovery depends on the level of processing (basically brick

level, data or procedure brick):

2/4

2/5

1. No recovery; processing continues at the next symbol;

missing keywords may be flagged and inserted at this point.

2. Recover to the next sensible item at brick level (PROC, STACK,
DATA, ENDPROC, ENDDATA, SVC, EXT, ENT, MODE, LET, TITLE,
OPTION). Note that the dual use of PROC, STACK can lead to

side-effect errors.

3. Recover as 2 or to a semi-colon and continue processing data
brick declarations; intervening declarations will not be
processed and may give rise to subsequent "identifier not

declared" messages.

4. Recover as 2 or to a semi-colon (processing any further local
declarations with the same warning as in 3) or to a statement
delimiter, i.e. RETURN, GOTO, SWITCH, FOR, TO (when not in

FOR statement), IF, WHILE, BLOCK, REP, END, ENDBLOCK.

5. Recover to a statement delimiter or semi-colon and continue
processing statements or initialisations as appropriate. Note
that in skipping to IF it will always be treated as opening
a statement, so that if it is textually opening an expression

further (spurious) errors are likely.

Note that errors in LET definitions may cause side-effect errors
because occurrences of the name may be replaced by null or
erroneous sequences. LET defined names are removed on replacement
and may not occur as the "last identifier" in a message; the

current symbol can also be confusing in these error circumstances.

It is also helpful to remember that the method of driving the

compiler leads it to expect certain items or sequences; a message
reporting something missing may seem ludicrous when that item

is obviously present on that line; however, examination of the
supposed structure at, or just before, this point should reveal

the source of the error.

e e e

w0
g
o
SIOXID SPTS 9ATH Aew UDTUm paumsse : # : T TeDOTTT # : OTT
yons se
pPe31eaI]} JO3RUTWIS] PUR SUTTMSU !{pPalI9SUT JUL]SUOD 914g T purssTw , / IeUYDHUTIAIIS UON 60T
1 burssTw g /3JUSUMIOD UT BUTTMIN 80T
possaooxd jou 3x93 jusnbasgns Aue :pojeUTWIAD] HUTPESI STNPOW T WwS3T UT JXOJRUTWIASL, LOT
SIOIID
y3busl osned ue)y -1ood ojur 3I9b TTT3S Aew sbutals xojeTd T peo3xesuT burils [INU - MOTFI2a0 Tood DBbUTIlS 90T
*I9JJTP SsuoT3ejuUaSaIdaI 9D0INO0S T butals UT STOqUAS # POYDIRPWSTRW SOT
peo3dwelle UOTIRUSIRDOUOD
% Alqeqoxd BUTSSTW 3% usUl ,, UO STIRF IT (TT)
JIOIID
xeluks xojoey uoTiTiadex IO JULISUOD 91Aq B JON (1) 1 pburssTw £ / eousnbes IauuT UT [OoquWAsS TebaTTI 701
sbuta3ls juoeoelpe yjztm poidwsije TTIFIS UOTIRUSFILOUOD T pburssTw ,, X0 HBUTIFS UT el /SUTTMON €0T
S9UojRWSTW Y3busaT Ia3eT 2ATDL ued T xeynbutalzs TebaTTI ¢OT
Wa3T 93PUTWIS] AW 90USY pPUEB JINOART Se poajeal] T I930edeyd TLI-UON TOT
SHOIYH WYYD0odId
STTe1Sp 20PJIIXIDJUT 99s !poajxodax ag Aew STYL, - seanTTel Auew 0OJ, =
- motyaano Tood Aexxy ve
- MOTJISA0 UOTJFBUWIOJUT SPOW €z
- SIDTITIUSPT AURW OO], 2Z
- saweu AUBW OO[, TeZ
- SI930®IRUD [UWeU AURW OO]J, oz
= a3xodex aseald - xoxxe xoT tdwo)d 2T
= desp 003 po3sau uotssaxdxy 1T
- 3xodax osesaTd - xoxxs I9T TdWOD o1
- 1xodeax osesTd - xoxxs IO TdWOD 8
- 3xodsx aseaTd - Joxxs o1 tdwo)d L
= xaTdwod 003 SpOoW 9
- 3xodex 9seatd - xoxxs xo7 TdwoD G
- desp 0073 po3sSdU 2ANIONIJS JUSWSILIS i
- SYO0Tq Auewl OO €
- desp 003 pe3saU SYOO0Td Z
_ pbuol o003 wexboxdg T
SYOYYH DIHJOYLSYLYO
NOTLVWJOANT VdILXH AdIAODHY HOVSSHNW “ON
SHOVSSHW HINTIVA dNH-LNOYA 7°1°¢C

B’z spunoq AueWl OO, 6€T
yojewsTw yibusy esneo ued gtz btgq oco3/TebOTTT punog 8€T
ple'z TeboTIT uUOoTIRIRTIOSP pPIOOaX/Aeily LET
Saweu PaIeTOdP UOU O3 spea] {Jdd Jdd FJO ©Sn I0 DUTSSTW odpou o Aey vic’e uoTjeoTyToads opow TeballI 9ET
uoT3eN3lTS UO spuadsp AI2A0D9Y vic’e spow 3Tnssx TebsT1I SET
S9UDJIRUWSTW 9POW OF PLS] URD UOTISSTWO DTIDRIUAS SNoTIeA (TTT)
() oo¥dd sawodagq QHJ@wUOHm Texa3T1 P(TT)
paxeTosp jou ssweu jusuodwod :aweu HJOW X93IY Z (1) bursstu) VET
7 Isbe3utr jou/burssTw Yibus foels €E€T
uot3eoryToads oanpsosoxd INA 7(TT)
AT9)TT obessaw suo uUrY] SJI0W :3SLD IOTIAG eIRJ € (1) yojewstw suoT3dTIOSSP INH/IXH CET
poUNSse SUOTOD-TWSS DT3IORIUAS Z X0 TIN butsstum ¢ 1I€T
po3sxdisjuTsTu oI SwelT Jo dnoib e Jo sbhesssw yons auo ATuQ Z TOAST ¥OTIq 3Je (S)welT TebalTlI OfT
2anTIeF WOXF AIDACDSI UO SaANDD0 ATuQ TIN NOTAQ BIRP UT WL3T TebaITI 62T
SWRU YOTIQ
putpeosid aeT3TIUSPT ou (AT) {dTI3 PuODSS I93Fe SWRU ON (TTT)
{T930vIRYD dTI3 butmotTO3] INoAeT (TTI) {I0XIS XeJlUuAs I9j32ueIed (1) TIN IOIAS UOT3D3S 3POD 8ZT
“INT/IXd Juepunpsi I0J SUOTILNRTS UOJeWSTW UT pPasn oOsTe
sbessawl STYJL °*PaIRTO9p 8 30U [TTIM 3IST] © UT SISTITIUsSPT usnbssqng snoTIeA paxeTosp Apeaile ISTFITIUSPT LZT
IS9TITIUSPT LAT A93JY T bursstu = 9Z1
LAdT sutyep 03 burtidwelly (TIT)
poAOuSI {WSIT SPOD SPTSINO PaISJUNODUSD TIY (T) 1 PIOMADY ST IDTFTIUSPT qzZ1
SIOAIAS SPTS Osned ued {po3oadxd ST SWRU B IDABUIYM SNOTIRA purtsSsTw IS TFTIUSPT vz
INOD0 30U PTNOoYS ssydIeWSTW I93RT OS Spou auwes JO ST OIA3Z T Po3I9SUT OXI9Z-MOTIFISA0 Tood JURISUOD T N
paxoubt soTraumu-eydre jusnbasqng T buoT 0ol sueN raA
sI10xxs xoj3awexed pue spow ‘y3zbusT 03 peal ued snotIea burssTu (TZT
UOTIeSTTRTITUT AeIaY €(TT)
SI0IID U3busT osneo pTnod :paxoubT sousnbss butrils xauur T(T) I030®v3J uoTlTIadex TebSTTI oYl
T oTeds Axeutrq TebarTI 6TT
£ sbuex jyo 3no areos Axeutrq/jusuodxy 81T
T Jusuodxe TebaT1I LTT
SIOIx® 9pow xo3rT osned Aeuw :paddrys s3THIP HuTtuTeWSy 1 buoT 003 juelsSUO) 91T
T butsstu 31hH1Q STT
UOTIPUWIOIUT JIOAAD UNUWIXPW 9ATH 03 oTnpow swalsAs JT Se 3eady 1 suoT3edTTdde uT °9poOH PIT
psxoubt swe3tdo jusnbesgns {3x93 ur uor3ido 03 saajay 1 Joxxe xejuds uorido €1T
paxoubT swejzTtdo jusnbasqng T xoxxd uotyzdo swrl-o1 Tdwo)d Z1T
paIoubT ST pIomAay T wel T-oxdew TeballI ITT
NOILVWHOJANI WYdILXH ATHAODTT HOVSSHN “ON

2/7

2/8

Swa9) opow DbUOIM SSpnNTOUT pue UOWWOD ST 3T

SI0II2 109JJ0-dPIS O 0OSTe ue)d

Plep UT JUP}SUOD o ISNW € 3dTIosqns x9H93UT UON 69T
gig pIOOSI IOJF I0JOS[8S pITeAUl 89T
uoTtssaxdxs ut jusuodwod IO YOTAJ Ss200k 03 burtidwelly ‘e spou Huoim JO ISTFTIUSPI L9T
UOT3IPSTTRTITUT BIEP UT YOTIQ BIEP DOAS UT 9TgeTIRA O3 9DUDIDIdY ¢ STnpow Ul 30U AISTFTIUSPI 9971
MOTIq TedoO0T AJ pPoOOUSIDIDX SHOTIAQ TeuIalxe Aueul OOJ G*g TINJ 3IST] SooUaIDIDI TeUIDIAXH G9T
€ UOT3eSTTRTITUT UT walT TebaTTI 79T
UOTJIEeSTITRTITUT UT JIOIID SPTS 9 Ued s yojewstw yizbusT Aexay €91
pot1ddns ubrts - I0 + € Juelsuod 93Aq TebaTTI 291
STgeTIeA 03 2weu DAS butssed pue siaojerado o3 patiddns
*I0II9-9PTIS B 9 ued

TUOTIPSTIRTITUT IO UOTSsaadxe SHY IO sjuswubrsse oTdT3Tnw UT SHI cee opou buoam Jo uoTssoadxd 191
uoT3ed T3 Toads Teuxeixs ut oaTdwexs HAOW Auew 003 !{ATSTTUn TIN uoT3eoTyToads uT sepouw AueW 0O 091

SWRU STgeTIeA JO SS200® TeIausb GYe(TTIT)

UOTjeIe[d9pP S3IT 91039 UOTILSTIRIITUT OTWRUAP UT STgeTIeA JO 9S() G(TT)
oouanbas apoo ut TIN(T) adoos JO 3no/peIeTOoSp 30U ISTITIUSPI 6ST
TnFssaoons TIT3S ST uorjexeToad TIN POSTITETITUT JOU STQeRTIBA 86T
A3TnbTqUe JuswelIel}s/UoTssaxdxs 7 MDOTEIANT pooeTdSTH LST
pue gNF Jo esed utr ATxenor3ixed SIOIXIS ISUlO IO sabessaul G'y ANd peooeTdsTIW 96T
JDutssTw XXX, AQ pasned aq IO 0} 9STI 9ATH URD STU] :pPSACUIDI WIIT 72 dmy pooeTdsTi GST
¢ Ww2T punodwod 10 ! JOJ JuUdW :ISTITIUSPT T[a2ge ON i : Jo asn TebaTTI PSeT
(1IN BuTSSTW YI¥AANA €ST
TIN butssTw DOYJIANE AN
*spIomAay paoeldsTw AQ pasned TIN burssTwl QNI TIG6T
*SI0XID I23eT 9snrd pue a0prT1d { TIN (A7TIHM butyojew) burssTw JHy 0ST
buoam oyl Ul oq Arw SIU3} :pPaJAISUT ST paomiay 23etadoxdde ayy, TIN butsstu ¥DOTIANI 6vT
TIN (o4 butyojew) burssTw JIY 8V T
TIN (05 butyojew) burssTu gy LYT
Gy 19ADT JULWP3P]S e we3IT TebolTlIl 9T
(eaep UT) X0aI10 TRUTDLHIIO posned DOMJIANT JT sobvssau omf, ¢ DO AN pooeTdSTIW SYT
SIOIID-OPTS OSNED Arul YD TUM pPOIIDSUT ag AWl UOTOO-THOS ¢ SNOTILA UOT}eIR[OS8p UT walT TeboTTll T

2IDY POTTRJ 30U YIVd UT safqetiea | siorsuwered DOMd UTYITM P(TT)

TageT A5TTeT3TUT 03 burtidwalle | UOTITUTIOP HAOW UTUITM Z (1) UOTIBSTIRIFITUT TeDaTTI eVt
, paieToop 2uel 9POR z opou A3dug f47an
Sy putpesy dool ut A3rreber1r/butssTu Od Pt
orgetara Toxjuod dooT-yod Xa3je o7gqrssod ATuo TIN bursstw = : oVl
NOTIVWMOANT WILXE XAAAODTY AOVSSHW i

O9UD SWT3-UNI BTA SBWT} OISZ Pa3NOLxa ¢ O ST ITWIT

ATuO s309339-8PTS I0F pPasn ST UOTIDUNF 3O9YD

Spou Swes |yl SIe sasn TTe ‘UOTITUTISP IAT e eTa porTddns st
FUBISUOD STU3 JT eyl SINSUS {JUSTOTIJFOUT JROTJI SWI] uny
pobbeTs aq TTTM (soTqeTaea TogeT ATTetoadss) sTeqolbh o3
STeS0T JO sjuswubrsse pue s3Tnsex yo burssed zernorixed ut
‘S9TqeTIeA UTRTd-UOU Y3ITM UOTIO® snoxsbuep ArTeriusiod Auy

dooT oL ATTT1S
3SOT 3INsSal a2aINpad0xdg

SWTII~UNI Je JURISUCD HBUTIROTJ

adods yo 3no butyeq

v0oc
€0¢

[40)4

T0¢

SHDUYSSHW OSNINJYM

I01I5 TedTbOT =, DburssTw (, @AeY OSTE APW :IOIAS OTIORIUAS TIN uosTxedwod pajaxorig 43
(3xed gsTa ue pey Apesare) aTqrssodut K11eo1boT o9 Aey S HSTH JO 9sn TebolTlI 16T
S butpesay dool ur A3TTebeTTT/BUTSSTW OF 06T
STeI93TT o9 3Isnu STaqeT = UOJTIMS UT Taqe] TebeTTI 68T
S UDJTMS UT welT TebsTTT/burtsstu 30 88T
iybnous xeasT10 jou zo7Tdwoo - jJuswslels NMNILAY ® SUTR3lUO0D
JUSWS3LIS 4T UP JO YoueAq Uded JT OSTR {SpPIOMA®Y POIISSUT
JO 3I09JF° OPTS Se INDOO UPD {3TNSSA FINOYITM payoeal 209ddN" TIN psuanisx 3o0u LINSHY L8T
S AT3091I100UT Spus UOT3TPUOD /BUTSSTW NAHL 98T
S AT3091200UT Spus UOT3TPUOD /BUTSSTW OQ G8T
(3xed gsTH ue pey Apesare) o1qrssodut ATTeoThoT oq AeR G ATHSTH JO 9sn TebaTTI ¥8T
AI200091 UO SIOAAD-OPTIS BSNED UL g AT3091100UT Spue juswelels/Hursstu ! €8T
buoTeq 30u ssop 9TqRTIRA(TT)
¥OTAq 103 Axessedsuun IO jJuUSSqe SWRU YOTIq (1) TIN I0XI8 OTIAq 3ISOH 28T
G PITRAUT UOT3RUTISOpP/PUTSSTW =: 18T
ST3ewoln®e ST DUTOUSIDISISDP DIDYM SISO SOPNTOUT g TYA JO osn TebalTIl 08T
S uoTssaxdxe UT welT TebaTI 6LT
G AT1309xx100UT Spus uotssaxdxa/bUTSsSTw NI 8LT
G A1309a1I00UT Spus uotssaxdxa/buTtssTu FSTH LLT
G butsstw ‘ /saojzswexed msI oog, 9LT
3Tney I9TTdwod 93edTpuT Aew puR INDD0 JOU PTNOYS S UoJewsTw Io3swered GLT
é) 9I07F8q po33Twod xojexadp = aanpsdoxd © 30N VLT
RUWOD UO STTIRI SABMTY G bursstu (/sadraosqns Auew oog €LY
9duaxsgax o3 burssed sopniour g ATuo peax oIQeTIIRA TOIIUOD YOI ZLT
€ elep UT burtousisgsisg ILT
ATuo sseo 3draosqns juelsuo) g'e UOT3IRTOTA punoq Aexay OoLT
AYINODHYT “ON

2/9

P8OC BACK-END INFORMATION

to all

specific to this compiler are available.

containing a particular opitem,

to the standard 'opitems'

(NW, NS, BC and BS)

RTL/2 implementations, further opitems

In any OPTION not

the default value will be

full set of opitems is as follows:

v 1 P S s Wbt

Opitem z Interpretation Default Value
i S
|
NW ? inhibit warning messages all warning messages given
|
NS i inhibit scope warning messages all scope warning messages
BC i array bound checks applied in array bound checks omitted
'safe' cases (gives full checks in 'safe' cases
in application language)
BS array bound checks applied in array bound checks omitted in
g 'unsafe' cases in systems 'unsafe' cases in systems
; language language
NC . minimal comments only generated full comments generated
i in object code
?
i
i
TR | run time line number monitoring no run time line number
i
E monitoring
|
FP coding to use P857 floating all floating point by control
point unit will be generated routines
where applicable
CM, QK ignored
oV fixed-point overflow detected

by control routines

overflow ignored

2/10

2.2.1 Cont, .

Notes:

NW and NS should only be used where a module cannot be compiled

because the messages overflow the message pool.

CM and QK have been included for compatibility with earlier

compilers.

BC and BS give the user control over two types of run time
array bound checks. A 'safe' case is one where even if the
bounds are violated no corruption of the software structures
can occur - an example is reading out of an integer array.

An 'unsafe' case is one where corruption can occur - any store
operation is unsafe and reading from an array of references

is also unsafe because the wvalue obtained may, when used as

an address, cause corruption.

In the applications language checks are always applied in the
unsafe case; BC allows the user to apply them in safe cases
also. In the systems language checks are not normally applied;
BS allows the user to apply them in the unsafe cases to bring
security up to the level of the applications language and BC

allows the user to apply the remaining checks.

It should be noted that in the case of a constant subscript of an
array accessed directly (that is not via a ref array variable)
checks are always carried out at compile time and never at run

time.

OPTIONs may be altered at Compile time as detailed in section
2.4.2. However, it is only possible to affect OPTION statements
within the source program, and it is therefore good practice

to include at least one OPTION statement in every RTL/2 module.

2/11

2:2..2

CODE segquences

The syntax follows the overall standard as described in the

RTL/2 Specification Manual thus:

Codeseq = codeheading codeitem....
Codeheading = CODE digitlist, digitlist;
Codeitem ::= ISO7-character-other—-than-& on @

& variable-name { @ data-brick-name

Thus in this implementation the characters 'trip 1' and 'trip 2'

of the specification manual are & and @ respectively.

The two values denoted by "digitlist" in the heading denote,
in bytes, the core space required by the code itself and

additional stack workspace required at run time.

The forms & variable-name and

& variable-name @ data-brick-name

are transformed by the compiler as follows:

2/12

I e

RTL/2 TEXT

CORRESPONDING ASSEMBLER

&integer

& raction

&string

&name

&&, &@Q

gidentifier

gmodename

& rickname

&literal-label-name

&localname

&component@mode

&globalname@databrick

3

literal value in hexadecimal

symbolic address of conceptual zero

element of string in pool

label followed by colon

&, @ respectively

depends on use of identifier as below

literal value of length of mode in

decimal

symbolic address of start of brick

symbolic address of label

displacement of variable from current

linkcell

displacement of component from start

of record

symbolic address of variable

offset from Al2 of the lowest addressed

workspace word available to CODE section

For further information on code statements and the run-time
representation of RTL/2 programs on the P800, see RTL/2 Reference

69, "The RTL/2 Run Time Environment on the P80O" (5122 991 2815x).

Back-End Restrictions

The following additional restrictions are imposed by this back-
end (independently of those of the front-end). They are unlikely

to be encountered in practice.

i) Generated labels (that is labels implied by conditional
statements/expressions and repetition statements) :

5 maximum of 32367

ii) Strings: : maximum of 3000 distinct strings
in pool
iii) Arrays: : maximum dimension is 8
iv) Blocks: 3 maximum depth of nesting is 15
v) Procedure calls: 5 maximum depth of lexically nested

procedure calls is 24

There are also natural restrictions on the size of integer and real

constants imposed by the nature of the object machine.

Reals have a maximum binary exponent of + 32767.

Back-End gError Mechanism

The mechanism employed by the back-end is similar to that of the
front-end. Few errors are detected by the back-end - most are
internal compiler errors (which should be reported to the RTL/2 Support

Team) and violations of the restrictions of the previous section.

2/14

2/15

For each error detected, two pieces of information are given:

i) The line number as for the front-end.

ii) An error number. Note that the numbers will not be distinct
from those used by the front-end and an indication of
whether the messages originate from the front-end or back-end
will be given if necessary. A table of numbers and corres-

ponding messages 1s given below.

Three types of failure are distinguished as for the front end
(see 2.1.3). The only significant difference is that no
particular recovery action is visible to the user in the case

of Program Errors. Note that in the case of Catastrophic Errors
(which terminate the compilation) and Program Errors (which do
not) the assembler module produced by the compiler will be of

no value.

BACK-END FAILURE MESSAGES

§9; MESSAGE EXTRA INFORMATION
CATASTROPHIC ERRORS

1 Program too long

2 Too many generated labels

3 Too many strings

4 Compiler error - please report

5 Array of too many dimensions

6 Compiler error - please report

7 Compiler error - please report

8 Too many levels Blocks nested too deeply
9 Compiler error - please report

10 Compiler error - please report

11 Not used
12 Compiler error - please report

13 Compiler error - please report

14 Compiler error - please report

15 Compiler error - please report

16 Procedure calls nested too deeply

17 Compiler error - please report

18 Compiler error - please report

19 Compiler error - please report

20 Compiler error - please report

Cont. .=

No. MESSAGE

PROGRAM ERRORS

101 Integer constant overflow

102 Fraction constant overflow

103 Real constant overflow

104 Compiler error - please report
107 Array exceeds 32767 bytes

WARNING MESSAGES

201 Unknown option

202 Real constant underflow
203 Integer too big?

Hints

There is little extra cost in space in applying array bound checks.
This is because the routines which perform the checks also do
other operations (such as subscript alignment for non byte arrays)

which are normally done inline.

The compiler contains certain memory features and, other things
being equal, it will remember a simple subscript, array base or
record base from operation to operation. Statements using the

same bases or subscripts should therefore be grouped together.

Conversions between normal and fine forms of integers and fractions

may generate up to 14 bytes per operation.

2/1¢

A

2.3 CONFIGURATION AND SIZE LIMITATIONS

2.3.1 Installation

The RTL/2 Compiler is built as a self contained program
running under DOM. With dynamic memory buffers it requires

20 K of core and optionally a line-printer for source
listing, error messages and report. Alternatively, the console

can be used for this purpose.

Information on building the Compiler is contained in Appendix III.

2:3:2 Source Module Size Constraints

The maximum limits for the resources are:

Resource Maximum
Identifiers 400
At brick level 250
Identifier names 250
Name Characters 1500
Generated labels 32367
Constant Pool 1000
String Pool 3000
Array bounds 50
Mode Information Pool 500

A table showing these limits and the resources actually used

can be printed at compile-—time.

2/17

RUNNING THE COMPILER

Command Format

The compiler is stored in the system library as a load module
named RTL. There is a catalogued procedure $RTL in the system
procedure file M:PROC which sets up the file environment for

the compiler. The compiler can only be run using this procedure.

$RTL rfN = file name |,U = userid—]_] FCN = controI]
_,INFO = r:l r,LS =file code..l —,OPl = option_l FOPZ = option.l

... [.op5 = option]| [;xREF = file name|[,0B = KoF|

Parameters

FN specifies a library source file containing the RTL source to
be compiled. If U is specified the file may be in another

user's library.
If FN is not specified, the temporary source file /S is taken.
However this file will be overwritten by the output so /S must

have been saved previously.

CN is set to F rbLLW if the source is to be compiled in systems

mode. If CN is omitted or is set to anything else, the applications

mode will be assumed.

INFO specifies the degree of reporting (see 2.4.8).

If INFO = 1 only minimal reports are output, titles, errors

and a success or failure message.

If INFO = 2 in addition, the use of resources, brick sizes and

a list of unidentified variables is output.

If INFO = 3 in addition, a concordance table is output showing

the line numbers on which each variable occurs.

If INFO = 9999 in addition, an interphase print is produced.

This is a compiler debugging aid.

2/18

LS specifies the file code to which the listing of source
will be sent. The file code must be assigned. Default is

O, (zero) for no listing.

By means of OPl to OP5, a source statement of the form;

OPTION (n) opitem, opitem, ...

may be modified by specifying the OPTION number in brackets

followed by opitems separated by semi-colons. The number in

the OPn parameter has no significance.

€.g. a source statement

OPTION (2) NS;

is modified by specifying

OP1l = (2) NW;TR

to OPTION (2) NW,TR;

The source listing, however, is not modified. XREF specifies
the name of the data file under which the cross reference
data generated by the compiler will be stored. Default, the

data is scratched.

If OB = KPF, a command, KPF /O will be executed after assembly,

to store the object code in the object library.

2.4.3 Action of the command procedure $RTL

The command procedure uses filecodes /BD, /BE,/BF, /L and /S.

They are released after use except for /S. The user should not

use these codes for local files. If the compilation is

successful, the procedure will assemble the output, and if requested,

keep the cross-reference data and object data.

The user may wish to alter the procedure, for example, to change

the defaults or to add extra OPn parameters.

2/19

The user should note that blank lines and the % signs are
significant.

If the compilation is unsuccessful, the command
file is skipped until the second % sign is read. This ensures
that commands like Assemble or keep cross-reference data are

not attempted when no assembler output is produced.

IDENT statement

All RTL/2 modules must have an IDENT statement on line O in

this form:

wIDENT <name of up to 6 characters>%<comments)%

The number of spaces in the statement is optional, but the
form above will enable the source module to be kept in the

library under the name in the IDENT statement using KPF /S.

This statement is copied to the assembler output file in the

form:

\ IDENT \ <name >y

Care should be taken to keep the assembler output in a different

library file from the RTL/2 source, if the output is required.

Examples

To compile PROG with a listing to lineprinter, in applications

mode, use;
$RTL FN=PROG,LS=2,XREF=XPROG,OB=KPF

If, however, the compilation fails because of a syntax error,

the user might use the following sequence of commands;

LED PROG,/S

‘! EN
KPF/S
$RTL INFO=1,XREF=XPROG,OB=KPF

2/20

2/2L

Workfile

The compiler uses a random access workfile of up to 80 sectors.
The sectors are allocated one at a time during compilation.
If the disc becomes full, compilation is abandoned. Filecode

/BE is assigned to the workfile while the compiler is running.

Environmental Errors

These are described in Appendix VI.

Report Format

The compiler, during the compilation of programs, outputs

a report to filecode 2. This report in the full form contains:

(a) Compiler identity.

(b) The source program with line numbers, if LS # O.

(e) The operands of RTL/2 TITLE statements at their point

of occurrence.

(d) Compiler error diagnostics and warning messages in

the format:

< error number>) LINE <line number)

where F or B is printed to indicate whether the compiler
Front or Back end found the error. The significance of
the {(error number> is defined in section 2.1.4 of this
manual if it originates in the front end or section 2.2.5
in the case of the back end. The <line number)refers to
the number of the line, in the source program, where

the error is detected.

A warning if compiled as systems module.

A resource table is INFO > 1.

A concordance table of identifiers and their 1line

numbers if INFO>2.

If the compilation is successful, a list of brick

names and sizes if INFO»>1l.

If the compilation fails due to a fatal environmental
error (described in Appendix VI) or a standard error
(e.g. array bound check or stack overflow), the
message:

"FAILS <error number > "

The Final Message "COMPILATION OK" or "COMPILATION FAILS"

which is also printed on the console.

2/22

CONTENTS

3.1

3.2

3.3

PHILIPS P800 DOM RTL/2 USER MANUAL

SECTION 3

THE RTL/2 LINKAGE VERIFIER

INTRODUCTION

CROSS-REFERENCE INFORMATION

3:2.2
3.2.3
3.2.4
35245

Key Letter Interpretation

3.2.1.1 X-External References
3.2.1.2 N-Entry Points
3.2.1.3 R-Control Routines

Notation for Data Items
Examples
Compiler Generated Data

Hand Coded Cross-Reference Information

3.2.5.1 Direct Hand Coding

VALIDATION ERRORS

RUNNING THE LINKAGE VERIFIER

3.4.1 Command Formats

3.4.2 Example

3.4.3 Environmental Errors

PAGE

3/1
3/1
3/.2
3/2
3/2
3/3
3/3
3/5
3/5

3/7

3/7

3/7

3/10

3/10

3/11
3/12

3/0

3.1 INTRODUCTION

A runnable RTL/2 program is produced in three stages:

(1) Compile RTL/2 modules into assembly code.
(2) Assemble the modules.
(3) Build the modules into a loadable program with base

programs and system libraries.

Any undefined labels, multi-defined procedures, etc. discovered
by stage 3, will necessitate the source being edited and the
three stages being repeated. Some errors will not be identified
by any of the stages, e.g. an 'EXT' brick specification differing
from the 'ENT' definition of that brick.

This document describes a program which can be run between
stage (1) and stage (2) and will report all errors including

those not detected by the above three stages.

Note that the use of the Linkage Verifier is not mandatory.
However, its use is highly recommended when a new program is being
built for the first time or after substantial changes have been

made to a functioning system.

3.2 CROSS REFERENCE INFORMATION

This information is output by the RTL/2 compiler to the data file

specified by XREF in the compiler's command string.

It is arranged as a series of separate items, each starting a
new line, and each being written as an assembler comment. Each
type of item is indicated by a key letter, which is the first
non-layout character to be found after the asterisk. An item of

data looks thus:

* <key letter> <data item list)

Spaces embedded within the data of an item will be ignored.

3/1

3.2.1 Key letter interpretation

The Verifier interprets cross-reference items which have the

key-letter N, R or X:

¢name-, <int’> and . spec» are defined in 3.2.2.

3.2.1.1 X - External references

Items with the key letter 'X' appear for every EXT or SVC
declaration in an RTL/2 module, and for control routines and

any other 'R' number labels used. There are five forms:

XP, /- name , , ¢ spec ; which defines an EXT PROC brick
XS, < name , , . spec which defines an EXT STACK brick
XU, < name » , - spec which defines an SVC DATA brick
XV, v name , , . spec - which defines an SVC PROC brick
XY, « name » , - spec - which defines an EXT DATA brick

and XRnn which defines an external 'R' number

3.2.1.2 N - Entry points

Items with the key letter 'N' define the name and specification

for every entry point in a module. There are five forms:

NP, < name > , <spec > for an ENT PROC brick
NS, < name » , < spec > for an ENT STACK brick
NU, < name» = (int 7 , ¢<spec> for an SVC DATA brick

NV, ¢ name » = ¢ int» , «spec for an SVC PROC

NY, < name » , < spec) for an ENT DATA brick

Note that the SVC DATA and PROC items define an entry integer
value as well as a name and description; this is the value

the name is to take in any module that refers to the SVC DATA
or PROC thus defined. For an SVC DATA brick this integer is
the address displacement (in bytes) of that data brick from the
start of the SVC area. For an SVC PROC this integer is the
data following the LKM instruction into which an SVC PROC call

is compiled. The method used to include NU and NV items in

3/2

3/3

3 Zeplis 3

the cross-reference information is given below in section

Sel ws

Note that R numbers are not defined by 'N' items. See 'R'

below.

R - Control Routines

This item defines a control routine so that it may be referred

to in this and other modules. The item may have five forms:

Rnn = <int)

Rnn = ¢ name >

Rnn =J name; + - int>
Rnn =- Rmm .

Rnn =<Rmm - + < int >

where nn or mm are 2-digit decimal numbers.

The 'name' which is referred to must be a module name or

entry point name.

'Rmm' which is referred to must be another 'R' number already

declared in the same or a previously linked module.

The method used to include an 'R' declaration is a module is

given below in Section 3.2.5.

Notation for data items

In the descriptions of items the following symbols are used:

<int» - this indicates a decimal integer.

(name » - this indicates the name of an RTL/2 brick or module.
It should be noted that the Linkage Verifier, like
the assembler, restricts names to a maximum of six
characters. Longer RTL/2 names are, therefore,

truncated.

< spec > - this is the brick specification string output by
the compiler. It gives, in a coded form, a list of

data types or parameters and results involved and

is used by the Verifier to check that, for example,
the description of an EXT data brick is correct.

The symbols used in these strings are as follows:

lve]

byte
int
frac
real
proc
label
stack
ref

ref array

=TS s N ¢ B e v B B S

array. This will be followed by the bounds of the array

(decimal) separated by a ',', if there are more than one.

M mode. This will be followed by a specification of the mode
and terminated by an 'N', or, if this mode definition is

already in the specification string, by a backward pointer Y.

N end of mode.
backward mode pointer. This will be followed by an integer
that indicates the position of the relevant mode definition
in the string as a count of characters from the beginning

of the string.

Q type or result of proc. Followed by the characters defining
the result of the procedure, or by a '@' if the procedure

returns no result.

T repetition factor. This will be followed by an integer to
indicate the number of repetitions. Not used in record

specifications.

Z String terminator.

3/4

3/5

B 2n 3

Examples

Two examples of cross-reference information are:

(1) ENT PROC OUTTP (BYTE X)
which would result in the following cross-reference
data:
*N P,OUTTP, BQ@Z

(2) ENT DATA DTX;
INT I,J;
REC HOLDER;
REF REC PTR;
REF ARRAY BYTE RAB;
ENDDATA;

which, if REC is defined by MODE REC (INT I1,I2,BYTE

B3); would yield *N Y,DTX,IT2MIIBEY4XBZ

It can be seen that it is easily possible for these specification
strings to be too long to fit on a single line. If this is the
case they continue on as many continuation lines as necessary,

each line starting with an asterisk.

Compiler Generated data

Cross-reference items are arranged by the compiler in two main
groups. The first group describe the EXT, SVC or ENT
declarations appearing in the module, i.e. the names and
parameter or data layouts which the Verifier must check. The
second group define the layout of the compiled brick structure
of the module in sufficient detail to enable the program to be
linked in other operating systems. The second group is however

ignored by the Linkage Verifier.

In addition cross-reference information will contain details

of non-RTL/2 external and entry references. These include:

(i) 'R' numbers, i.e. labels of the form Rnn (nn being
two digit decimal numbers in the range @@ to 99)
which represent control routines or other system

addresses and constants.

(ii) Entry values for SVC PROC and SVC DATA. The compiler
will generate external reference calls for standard
control routines. Other non-RTL/2 items are
inserted by hand either via the compiler in CODE

statements or in hand-written modules - see Section

3u245.

The order of cross-reference information is immaterial except

that 'R' numbers used in defining others must be predefined.

3/6

3/7

302D L

Hand-coded Cross-Reference Information

A user may wish to include non-RTL/2 items of his own
specification in the Cross-Reference Information. Such

information is directly supplied to the linkage verifier.

Direct Hand Coding

Where a module has been written in assembler, the cross-
reference data must be hand-coded according to rules in
sections 3.2.1 and 3.2.2, and input directly to the linkage

verifier.

VALIDATION ERRORS

Errors detected by the Linkage Verifier in the cross-reference
information are reported to the user by a message of the

form:

LNK ERROR int

where the integer specifies the type of error. Some error
messages will contain additional information as indicated
below, which will follow the error number and be separated from
it by a comma. On the following page there is a complete list

of the error numbers and their meanings.

ERROR NO.

SIGNIFICANCE

An illegal item has been found on the cross-reference

file being read.

The list used within the Verifier to hold 'ENT' brick
information has overflowed. If this error occurs other
side—-effect errors may be generated as the Verifier
resets its list pointer and overwrites the previously

assembled information.

The list used within the Verifier to hold 'EXT' brick
information has overflowed. If this error occurs, other
side-effect errors may be generated as the Verifier resets
its list pointer and overwrites the previously assembled
information. The error is less likely to happen if the
order of input of the cross-reference files is such that

'ENT' definitions precede their 'EXT' references.

Two 'ENT' bricks have been declared with the same name.

The name is printed.

The specification of an 'EXT' brick does not conform to
the 'ENT' definition of the brick. The name of the brick

is printed.

An '"EXT' brick has been defined for which no corresponding

'ENT' exists. The name of the brick concerned is printed.

An 'R' number reference has been found that is not of the
form 'R digit digit '. The two characters following
the 'R' have been treated as digits and the value resulting

from this treatment is printed.

An attempt has been made to define an 'R' number twice.

The number concerned is printed.

3/8

3/9

ERROR NO.

10

B

SIGNIFICANCE

An 'R' number definition has been found which depends on
another 'R' number which has not previously been defined
in the cross-reference input. The number concerned is

printed.

An external reference has been made to an 'R' number that

is not defined. The number concerned is printed.

Notes:

(2)

Error numbers 6 and 10 are only output during verification
after all the cross-reference files have been input.
Errors 1-4 and 7-9 are only output as the cross-reference
information is read. Error number 5 may appear at either

time.

The limit for error 2 in the current version is 150 ENT
bricks. The limit for error 3 is 300 unresolved EXT's

at any one time.

3.4

3.4.

RUNNING THE LINKAGE VERIFIER

Command Format

The catalogued procedure:

$LVE r}N = file name—IITXF = file naméw Fis = file codé1
is used to run the Linkage Verifier.
If IN is specified, the module names are read from the data file

name supplied. Default is the system console.

LVE uses the line editor to build a source file of cross-
reference data, starting with XF and adding the module names
supplied. The default for XF is the standard file R:XREF
containing all the system data. This file must be in the
user's library.

LS is the file code to which the listing of source is sent.

The default is O (Zero) for no listing.

When the procedure is run, the program asks for the names of
the cross-reference data files for the user modules. Supply
the names separated by commas or a new line. The list is

terminated by replying with a new line. e.g.

MODULE NAMES? X1, X2/cx)
MODULE NAMES? X3 (:)
MODULE NAMES? {7+

\
Mg

If the IN parameter is specified, the prompt is still output

but replies are read from the data file specified.
Remember to add a blank line at the end of the file.

The procedure then runs the line editor. The editor will

output warning messages on the console:

EOF IN AUXI INPUT

These are of no conseguence.

3/10

3.4.1 Coft e

If a data file is not in the library, the editor will ask for
the command to be re-entered on the console. Inspection of

the line printer log will reveal which module name caused the
error. If the cause is mis-typing a name in the first phase,

the command may be re-entered as

ZZJIN ¢name)»,0, 1000

After verification, a message

VERIFICATION OK/FAILS

is output on the console and any errors are reported on the

line printer.

See section 2, Running the Compiler, for information on

storing cross-reference data.

3.4.2 Example

A program is compiled as

$RTL FN=PROG, XREF =X:P

The compilation is successful so;

$LVE

MODULE NAMES? X:P

MODULE NAMES?

EOF IN AUXI INPUT

VERIFICATION OK (OR FAILS)

3/11

I —

3.4.3 Environmental Errors

These are described in Appendix VI.

3/12

PHILIPS P800 DOM RTL/2 USER MANUAL

SECTION 4

THE RUN-TIME SUPPORT SOFTWARE

CONTENTS
4.1 INTRODUCTION

4.2 BASE PROGRAM

4.2.7. Short Version
4.2.2., Long Version
4.2.3. RRGEL

4.3 STREAM I/0
4.%.1. Standard Library Procedures
4.3.2. Stream I/0 Support Procedures

4.%.3%. Communications with Stream I/O Support
Procedures

4.3.4. Stream I/0 Support Module
4.3.5. The Detailed Specification

4.4 CONTROL ROUTINES
4.4.17., Using Control Routines
A.4.2. Errors Detected by the Control Routines

4.5 TUSING MONITOR REQUESTS (LKMs)
4.5.1. Monitor Requests in RTL/2

4.5.2. Procedures for Getting and Releasing Dynamic
Buffers

4.5.3. Example of Use of Dynamic Buffer Procedures
4.5.4. Other Monitor Requests

4.5.5., Monitor Requests not Included

4.5.6. Example

PAGE

4/1

4/2
4/%
4/3

4/5
4/5
4/5

4/6
4/6
4/6

4/1
4/1
4/1
4/8
4/8

4/8
4/9
4/9
4/10
4/10

4/0

4.1 INTRODUCTION

The RTL/2 package for DOM contains several run-time support
items, some of which are mandatory. This section of the
User Manual describes the modules at the user level.
Further information concerning implementation may be found
in Appendices. All run-time support is supplied in source
format to enable the user to tailor any aspect to suit

his particular requirements.

The mandatory items are the 'Control Routines' and the
'Base Program'. The control routines provide run-time
support fior the compiler-generated code and as such are
bound intimately to the compiler's conventions. The base
program provides stack initialisation, error handling and
other miscellaneous features necessary to interface RTL/2

programs with the host environment.

The optional items are the components of the stream I/O

support package. This obeys the RTL/2 standards defined in
RTL/2 Reference 5. The character and formatted I/O routines
defined there have been augmented by procedures which allow

the user to open and close files and switch channels without
having to be familiar with the rather complicated I/O interface.
If the user wishes to utilise the full power of the operating
system, which means interfacing at a lower level, procedures

are available for making "link to Monitor' requests. To work

at this level the user must be familiar with the operating

system in detail.

Useful items of support documentation for this section are:

RTL/2 System Standards RTL/2 Ref. 4 (5122 011 28961)
RTL/2 Standard Stream I/0 RTL/2 Ref. 5 (5122 011 28971)
The RTL/2 Environment on the P800 RTL/2 Ref. 69 (5122 991 28131

4/1

4.2

BASE PROGRAM

The base program, RRBPG,is written in assembler. There are
conditional assembly instructions to generate long or short

versions of the program.

Short version

This provides:

a) The SVC DATA bricks.

b) Data for the SVC procedures.

c) Code to get a dynamic buffer and initialise it for the

run—-time stack, initialise registers for RTL/2 and call

the user's outermost procedure RRJOB.

d) The standard error procedure RRGEL (See RTL/2 Reference 4).

e) The standard procedures:

RRNUL - Null parameterless, resultless procedure.
RRIPF - Default input routine.
RROPF - Default output routine.

RRIPF and RROPF consist of a call to RRGEL with error numbers

98 and 99 respectively.
To assemble the short version set

PROGSZ \ EQU \ 0

The stack length n in bytes is set by STLEN\\EQU\11

These assembler statements are just after the EXTRN statements

in RRBPG.

4/2

4/3

4.2.3

Long version

The long version is as the short version but in addition RRGEL

gives a register and stack dump on file code 2.

To assemble the long version set PROGSZ to any value except O.
RRGEL
(see RTL/2 System Standards, RTL/2 Ref. 4) <5122 011 28961

The DOM implementation performs the output of an error message
and passes control to label ERL (if this is in scope). If ERL
is not in scope, an RTL/2 error 3 is generated, the run-time stack

is released and a program exit is executed (LKM 3).

The message is output on the line-printer and the operator console

(file codes /2 and /01) and has the format:
RTL/2 ERROR {error number} LINE <line number)

Where (error number) is the parameter of RRGEL and {line number >
is the number of the line in the source text of the last statement

executed in a module which was compiled with the TR option.

When the long version has been specified, in addition to the above,
register and memory dumps are output on filecode /2 in the

following manner:

Al A2 A3 A4 A5 A6 A7
8C60 0004 789C 0085 E8AC 3FDO OOBO

A8 A9 AlO All Al2 Al3 Al4
885A 8F54 6C40 128E D2E2 3FDC 3FD4

STACK DUMP

D2CO 0000 D2D2
D2DO 789C FACL 8F54 FAC1 8956 0085 0002 0005
D2EO 88D4 D2E8 88C2 OOEF D2F2 7E82 OS5EF FACL
D2FO OCEF D304 7A88 0001 79AB 79A7 2020 427E
D300 0000 0000 D308 789¢ D30C 427E D30C

CR AREA

3FCO 0000
3FDO 0000 Focl 78B4 0001 D2DO FAC1 78F4

The dump format is the contents of eight memory words preceded
by the address of the first word. In the above example the
stack starts at D30C and the contents of this word is a pointer
to itself. The stack is printed to the lowest point used so

far in the program.

CRAREA is the Control Routine and fortran interphase stack

pointed to by Al4. It is only printed if it is in use.
For a description of the stack and register usage see "The

RTL/2 Run-Time Environment on the Philips P800 Series" RTL/2
Ref. 69 (5122 991 28131)

4/4

4/5

4.3

40301

4.3.2

STREAM I/0O

Character stream I/O is supported according to the standards
defined in RTL/2 Ref. 5, "RTL/2 Standard Stream I/O".

The character and formatted I/O procedures defined therein
are supported in the DOS implementation by procedures for

opening, closing and switching I/O channels.

Standard Library Procedures

The following formatting procedures (defined in"RTL/2 Standard
Stream I/O", RTL/2 Ref. 5) are available in source and

object form:
FREAD, FWRT, FWRTF,
IREAD, IWRT, IWRTF,
RREAD, RWRT, RWRTF,
TREAD, TWRT, NLS, SPS

Errors from these procedures are detailed in RTL/2 Ref. 5.

The individual source Files supplied may be used to create

an object library.

Stream I/O Support Procedures

These procedures permit the user to perform simple stream
input and output without detailed knowledge of the DOM Library
and the DOM monitor.

The standard I/O formatting procedures in the RTL/2 stream
I/0 library are supported as are the procedure variables IN

and OUT in SVC DATA RRSIO.

4.3.3

4.3.4

4.3.5

Communication with Stream I/O Support Procedures

The parameter and result mechanism of RTL/2 is used
exclusively for communication between the user and the

support procedures.

Stream I/O Support Module

When building programs using I/0 support, the user must
also include the stream I/O support module, RRSIO. This
may require regeneration to cover a greater number of

streams in simultaneous use; the standard module as supplied

is set for 8 streams.

The Detailed Specification

Appendix II contains detailed specifications of the stream
I/0 support module and the errors detected. An example
program with the full sequence of input, compilation, assembly,

linking and running commands is also included.

4/6

4.4 CONTROL ROUTINES

The control routines provide out-of-line functions in

RTL/2 such as array bound checking and type conversions.

The P800 control routines will not in general operate in

other environments.

4e4.1 Using control routines

Provided all the control routines are in the object library,
the individual routines required by a program are picked out

automatically by OLE when the program is linked.

For further information see "The RTL/2 Run-Time Environment

on the Philips P800 Series", RTL/2 Ref. 69 (5122 991 28131)

4.4,2 Errors detected by the control routines

Errors detected by the control routines (which are normally

unrecoverable) using RRGEL.

Error No. Significance

1 Stack overflow (on procedure entry it is
found that there will not be enough stack

space to complete the procedure).

2 Label error (GOTO out-of-scope LABEL) .

3 ERL out of scope.

4 Array bound error.

5 Fixed point overflow (when OPTION ()OV is in use.)
6 Floating point overflow.

7 Fixed point overflow on conversion.

4/7

4.5

e 5

4.5.2

USING MONITOR REQUESTS (LKMs)

Monitor Requests in RTL/2

SVC procedures are provided to enable the user to make
Monitor Requests without having to drop into code. With the
exception of the procedures for getting and releasing dynamic
buffers, a knowledge of the operating system is necessary

to set up the communication blocks required.

Procedures for getting and releasing dynamic buffers

There are two procedures in the module RRBUFF.

Their use does not require any detailed knowledge of the operating

system but the following should be noted.

1. The procedure does not set an array length word and
so the procedures can only be used in the systems
language and care must be taken to avoid breaking array

bounds.

2. When a buffer is released the gap in memory is not
closed up and a future buffer request will only succeed

if there is an available gap large enough to accept it.

If there is not enough room for a request an unrecoverable error

65 occurs.

The procedures are defined by

EXT PROC (INT) REF ARRAY BYTE RRGBF; and
EXT PROC (REF ARRAY BYTE) RRRBF;

for getting and releasing buffers respectively. The parameter
to RRGBF is the length of buffer required in bytes (remember to
add 2 bytes for the array-length word).

4/8

Note that if the user wants a mode structure in dynamic

memory, the procedures may be defined in the user's module with REF

MODE instead of REF ARRAY BYTE. The error this will cause in Linkage

Verification may be ignored.

4.5.3 Example of use

PROC USEBUFF;
REF ARRAY BYTE P:= RRGBF (102);
P(60):=0; % CAN USE P(l) TO P(100)%
.sesetc...
RRRBF (P) ;
ENDPROC;

Note that using P(10l) or P(1l02) will destroy the buffer area

chaining links.

4.5.4 Other Monitor Requests

These are invoked by SVC PROCs. When the compiler encounters an
SVC Procedure, in-line code is generated which places the

first parameter in A7, the second parameter in A8 and then

does an LKM with data equal to the value of a symbol defined

in the Base Program. If only one parameter is specified it is
put in A8. If the procedure is defined as returning an Interger
result, the contents of A7 after the LKM are returned. There is

a list of procedures and their LKM numbers in Appendix I.
The procedures are defined in the user's program as for example:
SVC PROC (INT, REF INT) RRTIME;

The above procedure will generate an LKM 17 (under DRTM) and

the procedure is defined in the Base Program by the assembler
statement;

RRTIME EQU 17

4/9

4.5.5

4.5.6

Monitor Requests not included

The SVC procedure table in the Base Program covers all LKM
requests at time of writing. Extra procedures to cover
user written LKMs can be included simply by including the

name and the LKM number in the Base Program in the form

<{name) EQU ¢ IKM number >

LKM requests with scheduled labels are not included in the

basic package because their use will normally corrupt the

run-time stack. However if a user wishes to use scheduled

labels after taking the necessary precautions, he can define

the negative LKM number as above.

Example

To set the time under DRTM.

SVC PROC (INT, REF INT) RRTIME;

MODE TIME (INT HOUR, MINUTE, SECOND, TENTHS, FIFTYTHS, CTIME) ;

DATA TIMEDATA;
TIME T;
ENDDATA;

PROC GTIME () ;

RRTIME (1,T.HOUR); $COMPONENTS OF T NOW CONTAIN TIME%

...etc...

ENDPROC;

4/10

PHILIPS P800 DOM RTL/2 USER MANUAL

SECTION 5

USER PROGRAM GENERATION

CONTENTS PAGE
5l INTRODUCTION

5.1.1 Other Target Operating Systems
5.2 COMPILATION AND ASSEMBLY

53

LINKING

5 ¢ Bl Non-overlayed programs
5sB3s2 Example
De Hed Overlayed programs

5.3.4 Stack

5/0

5/1

5s 1

5.1.1

INTRODUCTION

This section describes in detail the process of compilation,
assembly and linking of a program with the run-time support
software described in section 4 in order to produce a

runnable load module.

Other Target Operating Systems

Generation of operational programs for operating systems

other than P800 DOM is not dealt with here. Users wishing

to run their programs under other operating systems should
consult RTL/2 Ref. No. 69 "The RTL/2 Run-Time Environment

on the Philips P800 Series" for guidance on implementing their

own support software. Note also that the DOM control routines,
base program etc., are not interchangeable with other available
implementations of RTL/2 (e.g. IBM 370), and may need modification
for other systems, e.g. MAS though they may be used as a basis for

user-written support software.

~
&

COMPILATION AND ASSEMBLY

The RTL/2 compiler is described fully in section 2.
Output from the compiler will normally be assembled
with the DOM assembler, although other compatible compil-

ation/assembly environments may be used. The catalogued
procedure $RTL automatically assembles the output if the

compilation is successful.

572

5/3

5.3

Diei Sl

5.3.2

5¢3¢3

LINKING

Non overlayed programs

Provided all the run-time software (Base program, Stream I/O,
etc is in either the system or the user's object library,
the Philips Linkage Editor will pick out the required modules

and link them with the user's program.

Note that the start address in the base program, RRSTR, should

be used as a parameter in the OLE command.

Example

A user has a module JOBl in his object library which calls
procedures contained in JOB2 and JOB3, also in his object
library. The run-time software in the system library. The

following commands are used to link the modules.

INC JOB1l
OLE M, RRSTR

The overlay linkage editor will pick out JOB2 and JOB3 from
the user library and the relevant control routines etc from

the system library.
For a full description of the commands and parameters consult
the relevant Philips Programmer's Reference Dates for your

machine.

Overlayed programs

The overlay structure is defined using INC and NOD commands as
in the Philips documentation. It should be remembered that
the stream I/0 control module, RRSIO, although it uses dynamic
buffers, has various flags set within the module itself and so,
if different paths are using stream I/O, RRSIO should be
included at the root of the paths.

The stream formating library and the control routines

can be picked out as required by the overlay linkage editor.
5% 3 Stack

The size of the run-time stack is defined in the base program,

RRBPG, by

STLEN EQU n

where n is the size in bytes. The stack size can be changed

by modifying n and re—assembling the base program.

There is an SVC DATA brick

SVC DATA RRSTK

INT STKLO,
STKLIM,
WSPLO;

ENDDATA ;

which contains, the lowest point so far encountered in the
program, the lowest point in the stack and the lowest point in use

at any particular moment. Note that addresses greater than

32K bytes will be stored as negative numbers.

RRSTK is updated by control routine R:ROl.

5/4

PHILIPS P8CO DOM RTL/2 USER MANUAL

APPENDIX I
SVC PROCS
CONTENTS
I.1 SVC PROCS
1.2 USE OF SVC PROCEDURES

PAGE

/1

I/4

I/0

1/l

SVC PRO

CS

RRIOLKM
LKM
I/0 on

Note:

(INT, REF BYTE) ;

1
a peripheral device.
most I/0 operations, with the notable exceptions
of the Extended Data Management Package, are

supported by the stream I/O, described in Appendix II.

RRWAIT
LKM
Wait fo

(REF BYTE) ;
2

r an event.

RREXIT
LKM

(INT, INT);
3

Exit from a program.

RRGBF (

LKM

INT) REF ARRAY BYTE;
4

RRRBF (REF ARRAY BYTE) ;

LKM
Both de

5

scribed in 4.5,

RRPAUSE
LKM

Pause.

(INT, REF BYTE) ;
6

RRCNABT
LKM

(REF INT,LABEL);
7

Keep control on abort conditions.

Note: RTL/2 labels consist of 3 words.

RRLDSEG
LKM

Load an

(INT, REF INT) INT;
9
d segment.

Note: Not needed when OLE provided.

RRCNTIM (REF INT, REF INT) INT;
LKM 10 (DRTM only)

Connect a program to a timer.

RRDCTIM (INT, REF INT) INT;
LKM 11 (DRTM only)

Disconnect a program from a timer.

RRACTV (REF INT, REF INT) INT;
LKM 12 (DRTM only)

Activate a program.

RRSWITCH (INT, INT);
LKM 13 (DRTM only)
Switch inside a software level.

Note: second parameter not used.

RRATDEV (INT, REF INT) INT;
LKM 14 (DRTM only)

Attach a device to a program.

RRDTDEV (REF INT) INT;
LKM 15 (DRTM only)

Detach a device from a program.

RRTIME (INT, REF INT);
LKM 17 (DRTM only)

Get time.

RREVENT (REF BYTE) ;
LKM 18 (DRTM only)

Set an event.

RRCNLEV (INT, REF INT) INT;
LKM 20 (DRTM only)

Connect a program to a software level.

I/2

RRDCLEV (INT, REF INT) INT;
LKM 21 (DRTM only)

Disconnect a program from a level.

RRWTIM (REF INT) INT;
LKM 22 (DRTM only)

Wait for a given time.

RRASG (REF INT) INT;
LKM 23 (DRTM only)

Assign a file code.

RRDEL (REF INT) INT;
LKM 24 (DRTM only)

Delete a file code.

RROPMSG (REF INT) ;
LKM 25 (DRTM only)

Read unsolicited operator message.

RRCANREQ (REF INT);
LKM 26 (DRTM only)

Cancel request for an unsolicited operator message.

/3

USE OF SVC PROCEDURES

The use of SVC procedures is explained in Section 4.5.

I/4

CONTENTS

II.1

I1.2

IT.3

II.4

PHILIPS P800 DOM RTL/2 USER MANUAL

APPENDIX IT

STREAM I/O SUPPORT SPECIFICATION

PROCEDURE SPECIFICATIONS

IT.l.1
IT.1.2
Ir.1.3

Basic Procedures for opening and closing streams

Example

Effect of opening and closing a stream

EXTRA FACILITIES OF THE STREAM I/O PACKAGE

IT.2.1
IT.2.2
I1.2.3
II.2.4
IL.2+5

Single Buffering

Supplying an I/0 order

Default I/O orders

Supplying I/O orders - control bits
Supplying I/0 orders - functions

FILE CONTROL PROCEDURES

IT.3.1
IT.3.2

Procedures available

Orders available

END OF STREAM

IT.4.1
II.4.2
II.4.3

EOS Character
End of stream on input

End of stream on output

PAGE

I1/2

EI/2
II1/3
II/3

II/5
I1/5
TL/S
I1/5
II/6
II/6

II/9

I1/9
II/9

II/11

II/11

II/11
II/11

IT/0

1T/l

CONTENTS CONTINUED

II.5

IT.6

CONFIGURATION OF STREAM I/O PACKAGE

EL 5 ol Maximum Buffer Size

ITe5 2 Number of Streams

ERRORS
II.6.1 Error Reportings
II.6.2 Error Correction

PAGE

II/13

I1/13
II/13

IX/15

II/15
II/16

IT.1 PROCEDURE SPECIFICATIONS

Ir.1.1 Basic Procedures for opening and closing streams

There are four basic procedures, defined in the user's

module by:

EXT PROC (INT) PROC () BYTE RROPI;
EXT PROC (INT) PROC (BYTE) RROPO;
EXT PROC (PROC () BYTE) RRCLSTI;
EXT PROC (PROC (BYTE)) RRCLSO;
RROPF and RROPO —» RROPI and RROPO
RROPF and RROPO open input and output streams, RRCLSI and

RRCLSO close input and output streams.

The parameter to RROPI and RROPO is the file code of the
device or temporary file. For a list of the filecodes for
the devices consult the relevant Philips "Programmer's Reference

Data" for your machine.

The filecode supplied may be assigned to any device before
run-time but if it is not assigned at all a run-time error

will occur.

RROPI and RROPO return a procedure variable which is used for
input or output. This procedure variable must be supplied

to RRCLSI and RRCLSO to close the streams.

Although there are cases where it is not necessary to close a
stream before exiting from a program it is strongly recommended
to always close a stream when it is finished with. If a disc
file contains strange data after a run it is probably because

the stream has not been closed.

I1/2

I1,1.2 Example

A program to output a message on the system console and

line printer.

IDENT OUTMES
TITLE STREAM I/O EXAMPLE;
SVC DATA RRSIO;

PROC ()BYTE IN;

PROC (BYTE) OUT;
ENDDATA ;
EXT PROC (INT) PROC (BYTE) RROPO;
EXT PROC (PROC (BYTE)) RRCLSO;
EXT PROC (REF ARRAY BYTE) TWRT;
LET NL = 10;

ENT PROC RRJOB () ;
PROC (BYTE) SCOUT:

RROPO (HEX EF),
LPOUT:

RROPO (2) ;
QUT:= SCOUT;
TWRT ("# NL#ASYSTEM CONSOLE##NL#");
OUT:= LPOUT;
TWRT (" #NLFLINE PRINTER # NL#");
RRCLSO (SCOUT) ;
RRCLSO (LPOUT) ;

ENDPROC ;

I1.1.3 Effect of opening and closing a stream

When a stream is opened the following takes place:

1. Buffer space is obtained from the dynamic

buffer area.

2. Input Disc files are rewound, except

logical files /EO and /EE

II/3

IT.1.3 Conts e s
When an output stream is opened,
No line feeds or page throws are issued, so if the program
is writing to the line printer for example, a line feed
should be issued before writing to avoid overprinting the
program header.
When an input stream is closed
1. The dynamic buffer is released.
When an output stream is closed
1. The last buffer is output.
2. An :EOF mark is written.

3. Disc files are rewound, except logical files /EO and /EE.

4. The dynamic buffer is released.

I1/4

IT.2 EXTRA FACILITIES OF THE STREAM I/O PACKAGE

IT.2.1 Single Buffering

The standard stream opening procedure for output streams
generates a double buffering mechanism. There may be cases
when a user would sooner have some extra memory rather than
the extra speed of double buffering. For these cases an extra
procedure, RROPOS, is provided which is identical to RROPO,
except that it generates a single buffering mechanism. A

stream opened by RROPOS is closed in the normal way by RRCLSO.

I1.2.2 Supplying an I/O order

It is possible to supply an I/0 order as part of the parameter
when using RROPI or RROPO. Before doing this, the user
should be familiar with the effects of different orders, as
described in Philips "Programmer's Guide", Appendix C

Peripheral Input/Output.

The parameter to RROPI or RROPO is an integer of 16 bits whereas
the file code is a byte of 8 bits. The first 8 bits of the
parameter may be used for an I/O order. This means that the

'S' bit cannot be set. The effects of the different orders on
the stream I/0O are explained fully later in this section. There
are some subtle differences to the use of the orders in

an ssembler environment.

IT«23 Default I/O orders

The default I/0 order for RROPI is HEX82, standard read with

wait bit set.

The default order for RROPO is HEX 05, standard write with wait
bit not set.

Thus RROPO(2) is equivalent to RROPO(HEX (602)

I1/5

IT.2.4

IT,2,.5

Supplying I/O orders - Control bits

S bit

Cannot be set.

W bit (lst bit of parameter)

For output channels will cause a wait whenever a buffer is
output. If the bit is not set the output procedure will take
care of synchronisation. If the bit is set there is little

point in using the double buffering procedure.

For input channels the wait bit should normally be set. If

the bit is not set then the system will read in a fresh buffer

as soon as the last character in the old buffer has been passed

to the input stream.
To make the best use of this facility, the TREAD procedure

should be used with NL as a terminating character to read a
whole buffer in at once. The next buffer will be read in from

the device while the buffer in memory is being processed.

R bit (2nd bit of parameter)

It is not possible to process abnormal conditions in the user
program, however if the status word LAND HEX ID3#O0O the input
procedure will return the end of stream character HEX80 and

the user may wish to use the R bit in conjunction with this.

Supplying I/O orders - functions

Functions occupy bits 3 to 8 of the parameter.

Basic Read (1)

Characters will be read until the buffer is full. No special
significance attached to control characters. May be used for

reading binary data.

II/6

IT/7

Basic Write (5)

The default order. The buffer is output whenever the buffer

is full or a control character is encountered. The character
NL =10 will cause a new line,carriage return whatever the
device is. The character VT = 11 may be used to print a buffer
without moving the printhead, for example when an answer is

required on the same line on the console.

Basic Write (4)

This is a dummy order and will cause the control characters to
be output as any other. The buffer is output when it is full.
It is used for outputting binary data. It should not be used
on the printers as it will cause random form feeds and line

feeds.

Standard Read (2)

The default order. For a full description of its effects see

Philips "Programmer's Guide".

Standard Write (o)

See "Programmer's Guide".

Can be used, for example, on printers if a control code at

the start of a buffer is required rather than a control
character. This use should be avoided as it does not conform
to RTL/2 Standards.

Can also be used to punch with the special sequence LF-XOFF -
CR - Rubout at the end of a record. Basic write only outputs

LF - CR.

The character VI = 11 should be used to signify end of record

with this order.

Object Write (7 and 8)

See "Programmer's Guide".

It should not be necessary to use these orders.

Orders greater than 8

These should not be used when opening a stream.

is described in the next section.

Their use

I1/8

I1/9

TL+3

IT. 3.1

II.3.2

FILE CONTROL PROCEDURES

Procedures available

There are two file control procedures available, defined

in the user's module by:

EXT PROC (INT) INT RRORDI, RRORDO;

RRORDI is used for the file connected with the current input
stream and RRORDO for the current output stream. The parameter
is the order specifying which function is required. The

result is zero except where order HEX 30 is specified when the
result is the ASCII value of the characters representing the
device. Note that this order is simulated to avoid destroying

the control block.

A check is made that the function is compatible with the stream,
for example, 'Write EOF mark' is not allowed on the input
stream. No attempt is made to make sure that the order is only
issued to relevant devices, for example, 'Rewind to load point'
may be issued to a line-printer even though it may block the
system. Remember to output the current buffer, if necessary,

by outputting a control character before using these procedures.

Orders available

HEX14 Skip forward to EOS mark

HEX16 Skip forward to EOF mark

HEX22 Write EOF mark

HEX24 Write EOV mark OUT stream only
HEX26 Write EOS mark

HEX30 Return device

HEX31 Rewind to load point

HEX33 Backspace one block

HEX34 Space one block forward (not allowed for cassette)
HEX36 Skip backward to EOF mark

HEX38 Unlock

I1.3.2 Cont

For further information see Philips "Programmer's Guide".

Note the functions carried out by the Stream opening and

closing procedures in Section 1 of this appendix.

II/10

I1/11

II.4

II.4.1

I1.4.2

IT.4.3

END OF STREAM

EOS Character

On input, the end of stream is signified by the RTL/2
character EOS = HEX 80 being returned, and IOFLAG being set
to 2. End of stream is caused by :E0S, :EOF and any
condition which leaves STATUS LAND HEX ID3%O.

On output, the EOS character has no significance and is

output as any other. It is not treated as a control character.

End of stream on input

It is possible to read beyond the end of stream. If this

is not desired, the user should look for EOS as in

WHILE CHAR#HEX80 DO etc.

or he should check IOFLAG for 2 at the end of every line

as in

WHILE IOFLAG = O DO

TREAD ate.

IOFLAG is reset to O when a new buffer is successfully read. For
binary streams the user should check for IOFLAG=2 after each character.
Note that if data is read from the consoleeither by an RTL/2

program or a system program, the end of stream is signified by

typing :EOF on a new line.

End of stream on output

Normally end of stream is signified simply by closing the stream.
The user may close the stream himself using the control

procedure to write an :EOS or :EOF, if, for example, he does not

II.4.3 Cotitss s

want the file automatically rewound. The file will not be

properly closed by simply outputting ":EOF". A stream I/O

procedure must be used.

I1/12

IT/13

I1.5

IT.5.1

I1.5.2

CONFIGURATION OF STREAM I/O PACKAGE

Maximum buffer size

The buffer size for a file is set to the value returned
by DOM. The I/O module sets a maximum value for this
buffer and disc file buffers are always set to this maximum

value.

To make the most effective use of the dynamic area as many
buffers as possible should be of the same size and it is
recommended to set the maximum at or less than the maximum for
a device. A good value is 136, the length of the line printer
and some consol buffers. 256 may be chosen if cassettes are
used. The stream I/O package will print long buffers on two

lines if necessary.

The maximum size n in bytes is set by

LET MAXB = n;
in RRSIO

The revised version should be macro-processed, compiled and

assembled.

Number of Streams

The maximum number of streams is normally 8. These streams may

be divided among input and output streams in any way.

If it is desired to have more than eight streams open at one

time, RRSIO may be reconfigured. Change the macro statements:

[SET N 8] and

[sET P 16]

to the number of streams and twice the number of streams

respectively.

IT:5.2 Cont...

The revised version should be macro-processed, compiled and

assembled.

The number of streams may be reduced in the same way to save

space. Each stream has an overhead of 120 bytes.

Note that the macro-processor may run out of stack space
if the number of streams is large, because of the recursive nature

of the macro-structure in RRSIO. See Section 4.

II/14

IT/15

IL.6

II.6.1

ERRORS

Error Reporting

Errors detected by the stream I/O procedures are unrecoverable

and cause a call to RRGEL.

Error No.

51

53

54

23

59

50

6l

63

64

65

71

72

Procedure

RROPI
RROPO

RROPOS

RROPT
RROPO
RROPOS

RROPI
RROPO
RROPOS

RROPI

RROPO
RROPOS

IN,RRORDI

OUT,RRORDO

RRCLSI
RRCLSO

RRCLSI

RRCLSO

RROPI
RROPO
RROPOS

RRORDI

RRORDO

Significance

No streams left.

File code unassigned.

Illegal device for input order

Illegal device for output order

Stream not open.

Stream not open.

Stream already closed

Trying to close an unknown stream

Trying to close an unknown stream.

No dynamic memory available.

Illegal order for an input file.

Illegal order for an output file.

I1.6.2 Error Correction

Error 51 is corrected by closing a stream already open or by

rebuilding RRSIO for more streams. See II.4.

Error 53 is corrected by assigning the file code before

running the program.

Errors 59, 60 are caused by using a stream after it has been
closed. Using a stream before it has been
opened, in effect, assigning IN or OUT to an
uninitialised procedure variable, will leave

the program in limbo.

Errors 61,63,64 should be self-evident.

Errors 71,72 are caused by illegal orders or orders such as

'write EOF' on an input stream.

Error 65 caused by RRGBF not finding a spare memory slot.

Can be corrected by closing stream.

II/16

CONTENTS

LEL .1

IIT.2

LEL .3

III.4

ITT.5

PHILIPS P800 DOM RTL/2 USER MANUAL

APPENDIX III

GENERATING THE RTL/2 UTILITIES

INTRODUCTION

RTL/2 COMPILER

IXT.2.1 Overlay Structure
I1I1.2.2 Command file

LINKAGE VERIFIER

AUTOMATIC STREAM SELECTION

STANDARD RRCIPD VALUES

PAGE

ITI/1

I1I/2

I1I/2
I1I/2

III/3

II1/4

II1/5

III/0

ITI.1 INTRODUCTION

The RTL/2 Compiler and Linkage Verifier
are supplied in object form for building in the User's
environment. This Appendix covers the structure of these

programs.

ITI/1

IIT.2

IIL: 2.1

IIT.2.2

RTL/2 COMPILER

Overlay Structure

The compiler is built by using the Overlay Description

Language facilities provided by OLE.

The RTL/2 compiler can only be linked using OLE.

The overlay tree structure has 21 segments including the

root segment.

Each overlay segment is loaded once (if at all) during a
compilation. None of the back-end overlay segments will be

loaded when a compilation fails through front-end diagnostics.

Command file

The procedure $TREE will build the overlay structure and
run OLE. All the compiler modules should be in the same
userid, although fortran interface modules may be in
another object library specified by a parameter U. This
speeds up the access time for the object modules. Before

building, the user should make sure that RRCIPD contains the

required channel associations (See III.4).

III/2

EII.3 LINKAGE VERIFIER

This is built as a single overlay structure to rebuild do:

INC Lvl
OLE { parameters as desired » , RRSTR
KPF /L, LVER

The linkage editor will pick out LV2 and the required run-
time routines. Before linking, the user should make sure
the RRCIPD contains the required channel associations

(see III.4).

IIT/3

AUTOMATIC STREAM SELECTION BY THE CHANNEL INTERFACE PACKAGE

The utility programs use module RRCIP as an Interface to
RRSIO. When the utilities set up an I/O stream they pass
a question to RRCIP which prints it on the console and asks

for the file code desired for this stream as in:
LISTING OF SOURCE TO?

However the file code may be stored permanently in module

RRCIPD. In this case the gquestion is not output and the file code
is selected automatically, RRCIPD contains two arrays, INCODES

and OUTCODES.

If an element is negative, the association is prompted at
the console. If the element is O, this corresponds to typing

é@ to a question. i.e. a null association. If the element is

positive it is treated as the actual file code.

The channels are standard to all utilities

INCODES OUTCODES
1 Conversational 1 Conversational
2 Source input 2 Main output
3 Not used 3 Report and error
4 Listing
5 Not used

The user could, for example, change OUTCODES (3) to output to
a VDU.

Note that if INCODES (1) = HEX EE, the catalogued procedure file,
then OUTCODES (4) is set to an integer read in from file HEX EE.
This means that the listing channel can be specified by a

parameter in a catalogued procedure.

III/4

III.5 STANDARD RRCIPD VALUES

For the Compiler;

(HEX EE,HEX D4,0);

INCODES:

OUTCODES : = (HEX Ol ,HEX BF,2,0,HEX BD);

For the Linkage Verifier;

INCODES:= (HEX EE,HEX BF,O0);

OUTCODES:= (HEX 01,0,2,0,0);

111/5

CONTENTS

IV.L

Iv.2

IV.3

Iv.4

PHILIPS P800 DOM RTL/2 USER MANUAL

APPENDIX IV

SVC DATA BRICKS

INTRODUCTION

STANDARD RTL/2 SVC DATA BRICKS

Iv.2.1 Stream I/O
Iv.2.2 Error Recovery
Iv.2.3 Default Settings of Standard SVC DATA

DOM EXTENSION OF SVC DATA

USER EXTENSIONS OF SVC DATA

PAGE

Iv/1

Iv/2

Iv/2

Iv/2

Iv/2

Iv/3

Iv/4

IV/0

Iv/1

Iv.l

INTRODUCTION

SVC DATA bricks are applicable only to multitasking
operating systems, where each task has a private copy and
procedures shared by different tasks are able to automatically

access the appropriate area.

Strictly SVC DATA is not necessary within the single
program environment of DOM. However, the inclusion of the
standard SVC bricks greatly improves the ease of writing
portable programs, and may be of particular interest to
users developing (and perhaps testing) programs under DOM

for eventual running in other environments.

The SVC DATA bricks have permanent space allocated in RRBPG,
which initialises register Al3 to the address of the area and

defines the offsets for each brick name.

IV.2

Iv.2.2

Iv.2.3

STANDARD RTL/2 SVC DATA BRICKS

The following bricks are as defined in RTL/2

Systems

Standards, and are given here for completeness only.

Strxeam I/O

SVC DATA RRSIO;
PROC () BYTE IN;
PROC (BYTE) OUT;

ENDDATA;

SVC DATA RRSED;

BYTE TERMCH,
IOFLAG;

ENDDATA;

Error Recovery

SVC DATA RRERR;
LABEL ERL;
INT ERN;
PROC (INT) ERP;

ENDDATA;

Default Settings of Standard SVC DATA

On entry to RRJOB the base program will have

following values:

IN:= RRIPF;

OUT:= RROPF;

TERMCH:= HEX 80; (end of stream)
IOFLAG:= O;

ERL points to start of RRGEL;
ERN:= O;

ERP:= RRGEL;

set up the

Iv/2

Iv/3

Iv.3 DOM EXTENSION OF SVC DATA

The following additional bricks are included in the DOM

implementation.

SVC DATA RRSTK;
INT STKLO,
STKLIM,
WSPLO ;
ENDDATA;

This block should not be modified by the user but WSPLO
contains the lowest point of the stack reached in the

program and is of interest in assessing stack requirements.

SVC DATA RRERRX;
INT LINENO;
ENDDATA ;

This block is used by the control routines when the TR option

is used, to record the last traced line number.

Iv.4

USER EXTENSION OF SVC DATA

Users implementing under other operating systems and wishing
to include their own extensions of SVC DATA for program
testing under DOM can modify RRBPG to include the necessary

extra space, and definitions of further offsets.

Iv/4

CONTENTS

PHILIPS P800 DOM RTL/2 USER MANUAL

APPENDIX V

MATHEMATICAL ROUTINES

ROUTINES SUPPLIED

ACCURACY

NOTES ON MATHEMATICAL TECHNIQUES

ERRORS

PAGE

v/1

v/2

v/4

v/6

V/0

v/1

ROUTINES

SUPPLIED

The routines supplied are:-

EXT PROC

EXT PROC

EXT PROC

EXT PROC

EXT PROC

EXT PROC

EXT PROC

(REAL) REAL RSQRT;

returns positive root of a positive real number.

(FRAC) FRAC FSQRT;

returns positive root of a fraction.

(REAL) REAL RLOGE;

returns the log base e of a positive real number.

(REAL) REAL RLOG10;

returns the log base 10 of a positive real number.

(REAL) REAL REXP;

returns e to the power of a real number.

(REAL) REAL RSIN, RCOS;

returns sine or cosine of a real parameter in radians.

(REAL) REAL RATN;

returns the are tangent in radians of a real number.

ACCURACY

RSQRT

With NOIT=3 the error is less than 10_8 and is generally around

1077,
The error is given by
ABS ((RSQRT(R) * RSQRT(R) - R) / (2.0 * R))

FSQRT

With NOIT=4 the error is less than 6 x 10_5.

The error is given by

ABS ((FSQRT(F) * FSQRT(F) - F) / (2.0 * F))

RLOGE , RLOG10

The error is less than 2 x 10

The error is given by

ABS (RLOGE (R * R) - 2 * RLOGE(R)) / (4.0 * RLOGE (R));

The error is less than 8 x 10

The error is given by

ABS (REXP(R) - REXP (R * 0.5) * REXP (R*0.5))

/ (3.0 * REXP(R))

v/2

RSIN,RCOS

The error is of the order of 10—9.

The error is given by

ABS (RSIN(R) * RSIN(R) + RCOS(R) * RCOS(R) - 1) / 4.0

RN

The error is of the order of 10—9.

The error is given by

aBS (RATN (2.0 * R / (1 - R*R)) - 2.0 * RATN(R)) / (4.0 * RATN(R))

v/3

NOTES ON MATHEMATICAL TECHNIQUES

RSORT
The number is reduced to the range [%,l) using sequential blocks.

A linear approximation is made and the result is iterated a

a fixed number of times using the Newton-Raphson formula;
Un+l = %{Un + R/Un)

The exponent is dealt with separatly.

FSQRT

A value N is found such that

~28. 4 2—2n + 2

€. 2 <F £cC. for N =0,1,2

A linear approximation is made in this range by
x=F.2 L ¢y
and a fixed number of Newton-Raphson iterations are performed.

Note that divisions by 2 is performed by SRA 1.

RLOGE , RLOG10

The formula used is

lnx=lm¢3 +24+~%A3 + d5+% AT w .

(G111 S)

|
L= X= /4 |4l
|
X + /662
The procedure uses sequential blocks to reduce R to [%ri)and
the exponent is calculated as EMn2. The coefficients are

modified to reduce the error. RLOG10 simply multiples the

result at RLOGE by LOGlOe.

v/4

v/5

EXPTOP is chosen so that overflow will not occur.

X log 2 e®

X =g X log 2 e

2

So R is transformed to Rlog2 e.

This is decomposed to N + Y , |Y |(l

Y is transformed to Y/2 * loge2
Y
and Cody & Ralston's Alogorithm is used to calculate 2 .

o is calculated by a simple loop.

RSIN,RCOS

INTEG returns the parameter module iTT
SIGTOP is chosen so that overflow will not occur.
SCALESIN returns sin éII’ where R ¢ [}2.0, + 343]

2
It first adjusts R to be E [}1.0,1.@] using the periodic nature
of the sine function. The sine is found using the Chebychev
expansions.

RCOS (R) simply calls RSIN (R +/TT>)

2

The range is reduced to (0,1)

and then to (O,2—¢S)

In this area,convergence of the series, modified to improve

accuracy, is rapid.

ERRORS

Errors are recoverable.

Errox No.

Procedure

Cause

300 RSORT ,FSQRT Negative Parameter
301 RLOGE,RLOG10O Negative Parameter
302 RSIN,RCOS Number too large
303 REXP Number too large

v/6

PHILIPS P8O0 DOM RTL/2 USER MANUAL

APPENDIX VI

ENVIRONMENTAL ERRORS DETECTED

BY UTILITIES

CONTENTS
VI.1l GENERAL

TABLE VI.1l Unrecoverable Errors
VI.2 FATAL ERRORS

PAGE

VI/1

VI/2

vVi/3

vI /O

VI.1 GENERAL
In addition to error diagnostics produced by the utilities,

certain environmental errors may be detected by their

supporting software. These are described in this appendix.

vIi/1l

TABLE VI.1 UNRECOVERABLE ERRORS

Error No. Meaning

9950

9955

9956 Should not occur
9965 [

9966 ~J

9980 Random Access disc file not assigned before

Run-Time

9993

9994 Should not occur
9995

9996

Errors that should not occur may occur as a result of recovery following
an earlier error. Their occurance should only be reported if they are

the first error in a run.

In addition, stream I/0O errors may occur. Errors are usually caused by

files not being assigned properly before run-time.

VI/2

VI.2 FATAL ERRORS

Any of the errors listed in Table VI.l cause the utility

to abort, giving an RRGEL message.

vi/3

CONTENTS

VIT.L

VII.2

VII.3

PHILIPS P800 DOM RTL/2 USER MANUAL

APPENDIX VIII

SUMMARY OF ERROR NUMBERS

INTRODUCTION

RRGEL REPORTED ERRORS

UTILITY REPORTED ERRORS

PAGE

VII/1

VII/2

VII/3

VII/O

VII/1

VII.1

INTRODUCTION

This appendix is provided as a quick reference to aid
users in locating the s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>