
rrl

<E THE OTHER N
STK (lNT TOP|.N, RE.F AR,RAY

TNT,ARRAY (rO1 tN
TA RTLsYS; o/oTt
PTR,ælRrXPT
s.rRuc.l|.'rR'e OF
: THE ôTACI<. IT I

'6) gYTe Hx:=r o

RTL/2
Rur, tirne environment on PSOO

2701t

; lF l{f NoL AND I
Ç-(cElJ-.l.JAgT.

t +RPTR*C siGO
= r5 EfY-, TO O
VI EYæE,DS 2:I TH
,Bl-E CNOL)'RNA
{# NL(z), TBtF M

J*'lâ6T:{f .'f .

BUFFERCI) 'r' ''
..' OF Ll ,Lz-rLF?Af

'ROC1?oRETRO
RocRæotu)

rNAMF- (REF
X : r)/ eLS,ElF P >

=fO OP. =l2l-OUNT:=RT;CT (O
,àqz rHEN RrAG:

)E THAT B MARg
ÊTC+3); COTO

1026
l'l OOa,
31 OOr

7C/0L
r132L
100 1\
,820t

)420
r930r
100c

)200'
JE20/
4C/0c

sHr RETIIRNCT€N€)100'

THE RTL/2 RUN TIME ENVIRONMENT ON THE PHILIPS PBOO SERIES

RT-L/2 REFERENCE : 69 VERSION : 1

P''T[./2 Specification

Authors:

Date:

D. Webster, G.C. Stevenson, C.I. Dimmer

l4th ApriI L976.

Related Documents: Listed in Section B.

Dttrnnco. To describe the operation of the object code generated

by the P856/7 FITL/2 compiler" The body of the document

is concerned wj-th establishinq a suitable environment.
Appendices include specifications of the control routines
and code conventions.

Philips lata Systems Publ. Nr.: 5122 991 28111

Systems Programming Limited
L976
A1I rights reserved.

SECTION

8

APPENDIX

CONTENTS

INTRODUCTION

STACKS

2.L Stack Usage

2.2 Stack Format on PSOO

2.3 Entering The Userrs Program

2.4 Multiprogramming

2.5 Use of A6,AL4

SVC DATA BRICKS

CONTROL ROUTINES

TIIE BASE PROGRAM

5.1 Base Program Functions

5.2 Start-up Code

5.3 sVC DATA brid<s

5.4 RRGEL

5.5 Miscellaneous

OPERATING SYSTEM TMTERFACE

STANDARDS

REFERENCES

r.1 INTR,ODUCfION

T.2 BASE PROGRAM

I.3 CONTROI, ROT]TINES

I.4 SVC DATA BRICKS

I.5 OTHER TOPICS

PAGE

L/L

2/L

2/L

2/2

2/4

2/7

2/8

3/L

4/L

s/L
s/L
s/L
s/L

5/2

s/3

6/L

7/L

8/r

r/L
T/L

r/L
r/2
L/z

olL

APPENDIX

III

II

PAGE 2

rI.I INTRODUCTION

T.I.2 CONTROL ROLTTINE ENTRY

II.3 PARAMETERS AND RESULTS

T1..4 DETATLED SPECIFICATTONS

II. 5 OPTIONAL EXCLUSION

III.l TNTRODIrcTION

TTT.2 TIIE STACK MECHANTSM

ITI.3 STACK SIZE ESTIMATION

III.4 REGISTER CONVENTIONS

ITI.5 F(TL/2 DATA FORMATS

III.6 BRICK LAYOUT

III.7 CODE STATEMENTS

IV.I TNTRODUCTION

AV.2 STAI{DARD P(TL/2 BRICKS

IV.3 NON-STANDARD BRICKS

PAGE

1T /)

TT /1

LL/ 4

rr/24

T.TT/L

TTI/L

r.r-r /7
LLL/ é

I.tr/12
rrr/L7
TTT ,/1 O

TY/L
1if f 1

rv/2

IV

o/2

I.

1. l.

L.2-

1. 3.

L.4.

INTRODUCTÏON

This document describes the environment in which an RTI'/2 program

executes and how to set it up for initial entry to a user's program.

Vùhen an F-TL/2 program is running it assumes that certain conventions

are obeyed, e.g. that some registers point at specific areas of core,
and that these in turn contain information which will not be violated
behind the programrs back. Entry to such a program will obviously
have to be performed via some code sequence not written in P<IL/2 and

not therefore bouad by these conventions. Obviously this is heavily
machine depend.ent. This document deals with the PSOO environment.

The basic aim is to describe those aspects of PITL/2 program execution

comnon to all implementations on P8oo computers. A discussion of
operating system interfacing has also been incl-uded and two appendices

describe the rcontrol- routinesf and the code section linkage

conventions.

This document shoul-d contain all the informati-on a user needs in order

to rlm his own prograrns under a new operating s)Etem; it does not

attempt to tackle the problem of moving the PITL/2 utilities as well.

I.5. The reader is assumed to be familiar with the PSOO

Iisted in the references section.
and the documents

L/L

t /)

2. STACKS

2.L- Stack Usage

2.L.I. Any correct RTL/2 program manifests itself at run-time in the

form of nested control operations. This is most obvious in the

case of procedure execution; it is only possible to enter a

procedure at its head., and exit either by obeying a RETURN or

ENDPRCC statement, which returns control to the cal-ling procedure,

or by performing a GOTO to a label variable residing in a data

brick, or passed as a parameter to the procedure, i.e. one that
can only have been initialised by a procedure which has already

executed in part. The procedure caIl,/return mechanism is explicitly
nested and is enforced by the syntax of the language, but the

GOTO exit is only verifiable dynamically and may fail since there is
no guarantee that the label has been set.

2.I.2. Textual nesting can occur within a procedure, for insÈance where

variables are declared j-n BLOCKS or FOR loops. These are of no

concern in RTL/2 since aII stack manipulation beyond the simple

allocation of space for temporary results is done on procedure

enÈry and exit.

2.I.3. A 'stack' (Iast-in first-out list) is used by the RTL/2 object

code to hol-d this nested informêtion. In ord.er to start up an

P..5,L/2 prograrn, rrre must set up an ernbryo stack in the appropriate

layout. Appendix TI contains a general discussion of the object
code and describes Èhe stack in detail. Some of this information
is repeated here.

2/L

2.2. Stack Format on PSOO

2.2.I. rig.2.I. shows the layout of a section of stack as it would be

utilised by a single procedure. It contains'aII the regions

which may or must be created on procedure entry. The first
executable instruction of every procedure body is a call on a
proced.ure entry 'control routine' which, using a parameter embedded

in the code, allocates space for local variables on the stack,
beyond any similar regions already created- On procedure exit
this space is de-allocated. Thus, as successive, nested procedure

call-s are obeyed, the stack expands. As exits are obeyed the
stack contracts.

2.2.2. The 'Link-Cell' contains all the information needed to control
the un-nesting operation. It has two elements:

i) the address of the link cell for the procedure which

called thi-s procedure, and

ii) the program counter value for resumption in the calling
procedure.

Vj-a element (i), all rlive' link cells are chained together.
The entry to this chain, i.e. the address of the currently
executing procedure's link cell is held permanently in register
AL2.

2/2

L INK
CELL

AL2

LOCAL
VARIABLE
POTNTER (LVP)

PARAMETERS

RETURN
ADDRE SS

PREVIOUS LVP

LOCAL

VAR IA BLE S

I/ùORKING

STORAGE

TOP OF STORE

PROCEDURE

ENVIRONMENT

LOGI CAL

f -on oF srAcK
t.l- -o-^-!

L -'JJ

Fiq. 2.L. - STACK LAYOUT OF A SINGLE PROC.+

CONTROL
ROUT INE
STACK AREA.

2/3

2.3. Entering The Userts Program

2.3.L. Having examined the d.ynamics of stack utilisation we are now in
a position to describe the requirements for setting up the stack
for entry to the 'firstr RT.L/2 procedure of a program. A1l we

need do is generate sufficient of the standard procedure envj-ronment

as is necessary to match the specification of the procedure. In
the simplest case of a main procedure with no parameters, no local
storage, and returning no result it might be adequate to simply
call it by the single instruction:

cF A6, MATUPROG

which, assuming that A6 has been initialised, leaves the stack
looking like this:

A12 ___t
(LVP)

RETURN ADDRESS

OlD LVP

Link cell

2.3.2. The "old LVP" value will be unde fined, which is fine as far as

obeying the corresponding procedure exit back to the 'start-upl
code is concerned. However, the contïol routine which interprets
global GOTO statements has to have some way of determininq whether

the target l-abel is in scope, which it does by scanning the cbain

of link cefls backwards, looking for a match on Al2. If the label
has not been set, no match will be found. and it wj-ll not recognise

the end of the chain. Thus, the convention has been made that the
first location on the stack will always contain its own address, and

that Al2 will- point to it just before entry to the main procedure,

thereby positively terminating the chain.

2/4

2.3.3. A suitable entry sequence might be:

LDR AL2,A6

srR AL2 tA6

suK A6,2

CF A6,MAINPROG

which, after procedure entry housekeeping, would leave

the stack like this:

TERMINAL HA],F LINK
(ELL

)

RETURN ADDRESS

OLD L\P

Link cell for IvTAINPROG

AI2 (LVP

2.3.4. Currently, al1 run-time support packages have start-up
routines which use this convention. They are independent
of the characteristics of the usertF programs which must

always be entered by a proeedure of the same name. Every
user's main program wouldtherefore have the following
RTL/2 specification:

ENT PROC 0 MATNPROCEDURENAME;

Conventionally, the main procedure is called RRJOB in
accordance with PIT.L/2 recommended standards.

2/5

2.5.5-

A12 (LVP

Entry With Parameters

This arrangement is fine for entry to a single program
environment but when a sysÈem is constructed from several
processes it may be désirable Èo supply some sort of
parameter to each. consider, an interactive system written
in RTT-/2 supportiaq several terminals. since the code is
re-entrant one possible (not necessarily the best) method
of making the particular terminal nuriber avairable to the
program would be to specify this number as a parameter,
thus:

ENT PROC MÀfN (INT TERMNO);

and to enter it via:

LDR AI2,A6

STR AI2,A6

sttK A6, 4

sT A5,2,A6

CF A6,MAIN

(assuming the number to be in A5) leaving the stack so:

Dummy link cell.

',
Parameter

| "i.rt c.rr
)

obviously any nr:rnber of
way.

parameters may be treated in this

2/6

2.4. L.

2.4.2.

Multiprogramming

Ïn the above example it has been assr:ned that the start up

code has been run as part of the process which was to execute

the RTT-/2 program, for by definition a stack characterises a

process. If another process were to be made responsible for
setting RTL/2 stacks, for instance when creating processes

dynamically, the initial values, of AL2,AI4 would have to be

picked up via some external agenry (e.g. a dynamic store
allocator or a list of spare stacks). Any parameter would then

have to be inserted into the appropriate core locations and

the initial values of A12,AI4 copied into the task's register
dr:rnp area, wherever that miqht be. How this is done is obviously
system dependent in the extreme. It is not generally possible to
do so entirely in RTL/2 code, even if the stack is declared

as a STACK brick in an Ftf'L/2 source module, since assignments

to stacksare not defined in the language. Named^ RTL/2 stacks

may be accessed (manipulated internally) only by machine code

sections.

The method of process parameterisation suggested above is not
generally satisfactory since, being local workspace, the
pârameters are not accessible to other procedures run as part
of that process unless they are passed as parameters of each

caII, which is inefficient. In section 3 an alternative
method using SVC data bricks will be described.

2.5. Use of A6,A14

2.5.L. NOTE ttrat A6 is not used as a 'stacl< pointer' except during

procedure entry. Alll access to para:neters, local variables

and workspace items is by indexed addressing using register
AL2, the compiler performing calculation of âII offsets from

the current link ce1l.

2.5.2. During procedure entry A6 points to the logical top of
stack and part of the workspace area of the calling procedure

becomes the parameter area of the called procedure.

2.5.3. AI4 points to a logically distinct portion of the stack and is
used when calling control routines, and any FORTRÊN sr:broutines

used.

2/8

3.

3.1.

SVC DATA BRICKS

An ordinary data brick appears only once in core.

It may be private off-stack workspace of a

particular procedure or group of procedures, or it
may act as a conmon communication area between several
processes. It is often necessary to have the ability
to create data bricJ<s which, like stack, are private to
and referenced by the sarne name in each process, thereby
preserving the re-entranqf of the code. In RTL/2 such

areas are known as SVC DATA bricks. The compiler

accesses SVC and ordinary DATA bricks differently. The

latter are always addressable via some internally or
externally defined symbolic labeI; the former, of which

there may be many instances in a multiprograrnming system,

have Èo be addressed via a register, 413 on P8OO, the

adninistration of whictr is outside tJre scope of RTL/2.

AI3, like A12rA14 has to be set. up in assenbler for each

task in tJle system.

3/L

3.2. The RTL/2 object code references items in SVC data

bricks via syrnbolic offsets hrith respect to 413.

For example:

SVC DATA FRED;

INT I ,J,Ki
REAL R;

ENDDATA;

SVC DATA RRSIO;

PROC o eVtn IN;

PROC (BYEE) OT]T;

ENDDATA.

PROC JOE 0;
PROC (BYTE) P:=OUT;

END PR@;

might lead to the generation of:
LD A4,RRSIO+z,AL3

ST A4r-2,AL2 for the assigrunent.

3/2

3.3. It is the system constructorrs responsibility to specify the

mapping of all SVC data bridcs by means of assembly language

equivalences. For instance, the bricks defined above would

be declared:

FRED EQU O

RRSIO EQU FRED+I2

in some module, which definitions would be used in each

program or task.

3.4. To guarantee re-entrancy in atl the systems constituent
procedures, the SVC DATA area mapping should be tJ:e

same for any program or Èask. If the designer can group
procedures by process it may be that some core can be

saved by 'overlayingt some SVC data; however, this sort
of technique is exceedingly dangerous and should be avoided.

3.5. Some SVC DATA bricks are mandatory lf the target system

is to comply with RTL/2 standards. Tlrese are:

RRERR - error handling

RRSIO I stream I,/O
I strearn I/O

r{r(ùr1u J

3.6. The control routines and start-up code released to the
user also assume the presence of other bridcs, which

include the bottom address of the stack for procedure

entry checking purposes, and INT items whidr are used

to record. the low limit of the stacl< and the current line
cunlcer for code compiled with tJre TR option. Full details
of these SVC DATA bri.d<s appear in Appendix IV.

3/3

z/t'

4. CONTROL ROUTINES

4.L. Control routines are assembler subroutines which support RTL/2

generated code at run time. They fall- into four main categories:

(i) procedure entry/exit, C,OTO LabeI variable housekeeping

(ii) Array bound checks and shift count checki.ng.

(iii) REAL arithmetic.
1iv) TYpe conversions.

4.2. Some of these control routines can be omitted in certain

circumstances (refer to Àppendix II for detail-s).

4.3. The control rouÈines detect certain unrecoverable errors.

In all cases control is tralsferred to an error handling

routine (R:Roo) which simulates an RIL/2 procedure call to

RRGEL' which procedure is defined in the RT L/2 System

Standards,

4.4. Ttre implementor may vary these error handling conventions if

he wishes and is at liberty to 'optimise' procedure entry by

ramnrzinô ânv or all of three current facilities which are!rr Y qrrJ

(i) the stack limit check.

(ii) the stack usage recording-
(iii) workspace base recording.

4.5. Ttre specifications of all the control routines may be found in

Appendix II.

4.6. The control routines, although specific to the PSOO computers

are independent of the operatinq system-

4/L

4/2

5. TIIE BASE PROGRAM

5.1. Base Prosram Functions+

The base program is responsible for establishing a suitable
environment for the execution of an RTL/2 program. It has

to perform three main fr:nctions:

(i) initialise the stack and registers for entry to the

userrs RT.L/2 program.

(ii) allocate space for SVC DATA bricks and set SVC

DATA items to suitable default values.

(iii) provide the standard error procedure, RRGEL.

rhe base program is written in assembler and is specific
to bottr the machine and operating system.

5.2. Start-up Code

5.2.I. This sets up the PIIL/2 working environment and enters the

user's main proced.ure. The stack must be initialised as

described in Section 2, together wittr Ai-2,AI4. Al3 must

be set up to poinÈ at the beginning of the SVC data area

as described in Section 3.

5.2.2. When control is returned from the user program some sensible
action, such as returning control to the monitor, must be

taken.

5.3. SVC DATA bricks

The base program will normally allocate space from Èhe

stack area for SVC DATA. Since the base program must

initialize the items in this area, it must 'know' the
shape and size of all SVC DATA bricks.
The definitions described in Section 3 will usually appear

in the base program togeÈher with ENÏRY directives for
SVC DATA brick names.

s/r

tr,4

5.4.1.

s - 4.2.

RRGEL

P<TL/2 slrstem standards require that the SVC data brick RRERR

be incorporated in al1 svstems. It is declared:

SVC DATA RRERR;

IÂBEL ERI;

INT ERN;

PROC (TNT) ERP;

ENDDATA;

In order that the user be able to C'OTO ERL without having to
forego whatever system error monitoring facilities are

available, the procedure:

PROC (INT) RRGEL;

will invoke the monitoring before exiting to ERL. The control
routines, on detecting an error, call RRGEL in exacÈIy the

same way as would an RTL/2 program.

The user must code RRGEL in accordance with his requirements
for monitoring. Normally the contents of all the registers will
be dtmped to a suitable d.evice, along with the error ntrmber

(the parameter of RRGEL) and possibly the current source code

line number if this option is in use. Having done this the base

program should @TO ERL, if ERL is in scope. Since a control
routine nay fail before the userts P.TL/2 program has attempted
to set ERL, a default should be inserted by the start-up code.

Beware of failures in RRGEL which could cause indefinite looping.
Correct monitoring of stack overfl-ow (standard error I) demands

that the limit against which the stack check is made allows an

emergency margin always available for the execution of RRGEL.

s/2

5. 5. Miscellan eous

In single program systems, it may be convenient to include a

stack and SVC DATA bricks in the base program, in a ready-

-initialized state. This may also be possible in a multiprog-
-ramming environment but care must be taken over the restartability
of the code and the re-entrancy of any code to be shared.

s/3

5/ A.

6. OPERATING SYSTEM INTERFACE.

It is conventional in PSOO series operating systems to
use the LKIr{ instruction to enter operating system fr:nctions,
with parameters in registers A7rA8 and in some cases a result in
in 47. An in-line paraneter following the LKM defines which

function is to be performed.

Ttre RTL,/2 compiler for PSoO computers compiles an SVC PROC

call into such a sequence, and so long as the convention is
adhered to then no lon-level coding is required to access

operating system functions.

For any operating system facility not conforming to this
pattern the recorunended approach is to write an RTL/2

callable procedure, the body of whiclt presents a completely

P<TT,/2 conpatible parameter and result specification.
Further run-time support software can then be writ,ten usingt

such procedures, and SVC PROC calls, with little recourse to
low-level code.

6/L

6/2

7. STANDARDS

Alr standard cornmercial compiler packages attempt to provide
facilities according to the RTL/2 recommended. standards.
The stream r/o forruatting procedures are written in applications
P.rI,/z and can be used immediately providing that suitable
procedures to match fN and OIII in RRSIO have been coded (usualty
Ln P<AL/2 and using the operating systemrs I/O facilities).

Since IN and OUT imply a 'current strean' in each direction,
further procedures are required if prograrns are to establish
associations of streams with peripheral devices or files, and

to allow routing of data to and from a number of streams. These

procedures and the. actual rN and olrr procedures are collectively
known as a 'stream I/O support' package, and they are worth
providing as a basis for writing portable - or at least trans-
portable - programs.

Certain systems will no dor:bt noÈ need this I/O capability, but
Èhe error handling conventions should always be forlowed unress
the user wishes to modify the control routines in a fundamental
way. Too much modification in this area can lead to tror:ble
when subsequent software releases are made.

7/L

"t /2

8. REFERENCES

(i) RTL/2 Language Specification, June 1974

RTL/2 Reference I, Version Z. (5122 O11 28951)
Ttris document is the autTroritative definition of the

- RTL/2 langaage.

(ii) Standards for RTL,/2 Systems, May 1973.

RTL/2 Reference 4, Version Z. (5122 O11 28g61)
Itris defines RTL/2 standards.

(iii) Standard Stream I/O for RTt/2 Systems, May 1973.

RTL/z Reference 5, Version Z. (5122 011 29g71)
This e:q>ands the definition of the standards for stream

t/o.

(iv) PEooM Programmerrs Guid.e

8/L

e/z

I. I. INTRODUCTTON

This appendix contains a list of features of standard

software that the user may wish to modify or re-write
from scratch.

T.2. BASE PROGRAM

(i) Start-up.
Initialise sÈack, AL2'413'AI4.

Size of A14 area if to be used for other purposes

(e.9. FOnIRAN)

CalI user's main procedure.

Handle the return and exit to monitor.
(ii-) Default ERP and ERL.

(iii) Procedure RRGEL.

I.3. CONTROL ROUTINES

(i) R:ROI - procedure entry
Stack check

Usage recording
(ii) Calls to RRGEL (all made via R:ROO)

(iii) SvC DATA definition for access to stack usage

monitoring and control items.
(iv) l"lore elaborate debugging aids can be conveniently

added to the control routines.
e.g. monitoring of procedure entry/exLL, general

COTOr s.

r./ L

I.4. SVC DATA BRICKS

(i) Decide mapping of SVC DATA bricks
(ii) Define this mapping. Usually by grlobal definitions

of brick names in the base program but not
necessarilv so.

T . 5. OT}IER TOPICS

(i) Having defaulted ERL and ERP in the base program

the user may wish to set up these variables to
point at RAL/2 quantities.

(ii) The implementor is at liberty to code the procedure

RRNUL, RRIPF and RROPF in RTL/2. He may not,
normally, do this with RRGEL without dropping into
code.

L/ t

If.1. INTRODUCTION

These routines are assembler-coded subroutines which

support the RTL/2 compiled code in a running system.

Some of them may be excluded from an RTL/2 program

or system. Section II.6. deal-s with optional excl-usion

of various routines.

All the control routines are re-entrant. One copy may

be shared anong any nr:nrber of concurrent RT.L/2 prograns

or tasks.

rr./L

T.I.2 CONTROL ROUTINE E\ITRY

The Control Routines differ from an P<TL/2 procedure

in the method by which they are called. They cannot

be explicitly cal-led in P<TL/2 text, although they can of
course be caLled explicitly in CODE sections.

Most of the control routines are entered bv:-

CF A14,R:Rnn

and return to the compiled code by:-

RTN A14

Refer to the detailed specifications for exceptions'.

to the above.

tr/2

rI . 3. PARAIVIETERS AND RESULTS

Parameters and results of control routines are

generally passed in registers. Some constant
parameters are planted in-line in the compiled

code as DATA directives.

The control routines operate on various types

of data, including the transient double length
fixed point forms ("Big" and. "fine" forms).
Appendix III deals witi aII data formats.

Byte variables, as in all stack operations,
occupy tJ:e least significant half of a whole

word on Èhe stack, the most significant half
being undefined. Variables of more than one word
(REAI, big, fine or LABEL) are arranged on the
stack in the same address order as they would be in
a data brick.

rr./3

Lr.4 DETAILED SPECIFICATÏONS

In the descriptions which follow the control
routines are grouped as they are grouped into
separate assernbler modules.

The "registers used" are in addition to any

for parameters and results, and are stated
so that CODE section authors are aware of
which registers wiII be nodified when calling
control rouÈines from CODE. The control routines
assume that A12,Al3 and AI4 have not been

corrupted. For further information on writing
CODE sections refer to Appendix 1II.

Errors are mentioned only briefly in II.4
FulI information is qiven in II.5.

rr/4

II.4.I. CONTROL ROUTTNE ERRORS

Modure IDENft_ - RTLROO

Control Routine:- R:ROO

I1.4.1.1. R:ROO Error handling, control routine errors
Called bv:-

(CODE sections or other control routines
only - never from compiled code.)

CF Al4rR:ROO

DATA (error number)

Action: -

R:ROO simulates an RTL/2 call on the standard

error procedure RRGEI.

Registers Used:-

A6, A9i the former contents which may be of
value in understanding the error are saved

in the AI4 area of the stack.

Exit: -

Via RRGEL to ERL, no direct return to calling
seguence.

TT/5

II.4.2. Procedure Entry and Exit

Module IDENT:- RTLROI

Control Routines:- R;ROI, R:RO2

II.4.2.I.R:ROI - Procedure Entry Housekeeping

Procedure calls are compiled into:-

(parameters into stack)
(set a6 pointing below parameters)

cF A6, (nr".)

Procedures begin:-

CF A6, R:Rol

DAIA (")

where (n) is the size (in words) of the local
variables and Èhe maximum workspace required
by the new procedure.

Exit:- to instruction following DaTA (n) .

Errors Detected:- Stack overflow - error no.1.

Registers Used:- 45.

n/6

fI .4.2.2. R:RO2 - Procedure Exit

ô: I I oÀ l.rrr. -

/-^^,-t+ ;€ - - \(resulr 1r any to Al
ABL R:RO2

Procedure results are alwavs pass;ed back

in AI (plus A2, A3 if resul-t is of more

than one word.)

Action:-- R:RO2 unwinds the stac],: to the link
cell of the calling procedure.

Exj,t:- to the calling procedure at ihe instruction
€nl lat.zi nn +Èra ^-OCedU;e CaIl.

Bsgistere [Ise,l": - A4-

rr/1

II.4.3. Array Bound Checks

Mod.ule IDENT: - RTLRO3

Control Routines:- R:RO3, R:RO4,

R:RO5, R:RO6,
p. pô7

Functi-on: -

These control routines compute the address of an

array element from the array base address and a subscript
value. The element address is checked against the bounds

of the array and an unrecoverable error results if the
address is found to be outside.

Errors Detected:- Arr:ay bound check - error no.4.

Result:- (array element address) in A9. \Teither A3

nor AIO are modified.

ar /Q

II.4.3.1. R:RO3 - Arrays of BYTES

R:RO4 - Arrays of fNT, FRAC, PROC, REF, and STACK.

R:RO5- Arrays of REALs

R:RO6 - Arrays of IÀBELs

Ca1led by:-

(array base address to Afo)
(array subscript value to e3)

CF Al4, R:Rnn

Exit:- to instruction followirg,
CF Al4, R:Rnn

Registers Used:- AlI.

rr/9

T.I .4.3.2. R:RO7 - Arrays of record.s.

Called by:-

(-t."y base address to AfO)

(.rmy subscript value to e3)

CF A14r R:RO7

DATA (record length (in bytes))

Exit:- to instruction followincr
DATA (record length)

Registers Used: - Al-, A2 , A1l.

r-r/Lo

I'I . 4 - 1\. c'heck Shif t Co,.tnt f or SUA, Iitll

Module IDENT:- RTLROS

Control Routine: - R:ROB

Functicn:- Checks shift counts for SIIA' SHL instructions;.

A maximum count is substituh-ed fc,r any valrte

in excess of the maximum.

Negative shift counts are biassed ln readirress

for instruction manufacture.

Called by:-
/shift count value to A3)\/

CF A14, R:ROB

Exj-t:- to instruction following the

CF Al4, R:ROB

where the following code appears:-

ADKL A3,/3sss

EXR 43.
rrqqqrr dpnpnrls ôn fhê l-wnp of shift and t-heseyerruJ vrr

reoisfer(s) to be shifted.

rr /11

II.4.5. General GOTO

Module IDENT:- RTLRO9

Control Routines: - D. DôO

R: RIO.

II.4.5.1. R:Ro9 - Stack Unwind

R:RO9 is only called from R;RlO and other assembler-written
code.

Function: -

R;RO9 takes a IÀBEL value, checks whether the value is i-n scope.

If so it. unwinds the stack to the link cell of the procedure

activati-on where the LABEL was set, and goes to the address
held in the label.

Called by:-

Label into Al, A2, A3

Al = target address

A2 = L\P (A12 value)

A3 = Link cell return address

CF Al4, R:RO9

Exit: -

to instruction following the,
CF AI4, R:RO9 only
i-f the label is out of scope.

Reoi sf crq TTqed. - AII.

T1 /1)

Il .4.5.2. R:R1O - General GOTO.

Function: -

R:RIO uses R:RO9 to check the LABEL value and to GOTO

it if i.t is in scope.

Called by:-

i_
lr,aoel into Al, A2, A3)

(see R:RO9 sPec)

Cf' Al4, R: RlO

Exit: -

Never returns to calling sequence- Either proceeds to

LABEL setting or unrecoverable error procedure'

Errors Detected:* LABEL out of scope-

erlor no. 2.

Registers Used-:* See RIRO9 sPec.

fi /L3

TT.4.6. Line Nunber Trace

Module IDEM:- RTLRll

Functi.on: -

Monitors RAT./2 line nunbers when OPTION OTR in use.

Called by:- CF ALA, R:Rll
DATA Gine nunber)

Exit:- to instuetion following the

DATA (line number)

Registers Used:- All

R:RII may be recoded, to monitor the execution of an PIT'I/2

proçJram, printing out line numbers as they are executed'

or to provide greater information on error conditionsi
e.g. the last IO lines executed.

fi/L4

II .4.7. Compare LABELs arll F,EALs

Module IDEIIT: - RTLRI2

Control Routines:- R:R12, R:RI3

II.4. i.I.R:Rl2 Oompare LABELS

Called b!':-

{faner-f target address to Al)
/. , -^\(label-r LVP (A12 value) Lo A2)
./.(label-I link cell reLurn address to a3)

/'pointer to label-2 to A8)\r"-"*-- -7

CF AL4, R:R12

Result: -

AIO zero if labels equal,
non-zero if labels unequal.

Exit: i,r lt "atnction following CF A14, R:R12.

Registers -!lse4:
* Alt

(Al, A2, A3, AB are preserved.)

11/L5

1I.4.7.2. R:RI.3 :_Compare-REALs

Cal1ed bv: -

-

/^^__
\fGAL-I manlissa, nore significant half,

to Al\
^l/(REAt-l mantissa, less sigrrificant half,

o e2.')
(neal -1 exponent i:o A3.>
(eointer ro REAL-2 ro A+
CF 414, R:R13

Result: -

AlO zero if REAL*I = REAL_2
AIO +ve if REAL_I > REAL_2
AlO -ve if RBAL_2 \ pnar_r

Exit:- to instruction following CF AI4, R:R13.

Fegisters Used:- Atl
(41' 42, 43, AB are preserved)

LL / LO

II. 4. B. REAL Add and S Lrbtract

Modufe TDENT:- RTLR14

Corrtrol Routines:- R:R14, R:Rl5

F uncti.ons: -

K:KI4 AOctS K.I';AL NllIIil)ETS

R:Rl5 subt.racts REAL numbers

Called by:-

(operand-l into Al, A2, A3>
/^(Pornter to operand-2 to eB)
CF AI4, R:Rnn

Result: *

In Al , A'2, A3. For R:RI4 this is
(oncr;nrl-I + oncr:nrl-?) Fnr P.Ql!\lJtJvlglru ! | v}/v!glrv À/.

it ie (onpr:nd-l - nnorand-?)\vrvrsrls lsrru a/ .

Exit:- To lnstruction following the,
CF Al4, R:Rnn.

Errors Detected.:- Floatinq point overflow-
- error no. 6.

Fegisters_9es:_d:- A7, A9, AlO, All
(AB preserved).

11/L7

II .4.9. REAL Multi1:Iy

Module IDEI'TT: RTLRIb

Control Rorrtine:- R:Rl6

Funct.ion: - Multiplies RIIAL nr-unbers .

Called by:-

(operand-l into Al, A2, A3)

(eointet to operand-2 to ABr\

CF Al4, R:Rl6

Result:- (Operand-I * Operand-2)

In Al, A2, A3.

Exit:- to instruction followin,g the,
Cf'414, R:R16.

Errors Detected:- Floating point overflow

- error no. 6.

Reglsters Used:- A4, A5, A6, A7, A9, A1O, All
(A8 preserved).

n/L8

I.L . 4. ILj i(IjAII UIV]-OE

Module IDENT:- RTL2I7

Control Routine:- R:Rl7

Function:- Divides REAL numbers.

I-a I 1 aÀ l'rtr. -

(operand-l into AI, A2, A3>

(nointer to operand-2 into AB)
CF Al4, R:R17

ResuIt:- (operand-I/operand-2)

fn Al, A2t A3.

Exit:- to instruction following the,
CF Al4, R:R17.

Errors Detected: Floatinq Point overflow

- error no. 6-

Reqisters Used:- A4, A5, A6, A7 | A9, A1O, All_

(AB preserved)

'tî /19

II.4.11. Fixed Point to REAL Conversions

Module IDENT: - II'ILRIB

Control Routines:- R:R18, R:R19, R:R2O, R:R21, R:R22.

Functions:-

Convert fixed point forms to REAL.

R: RIB converts Ili'I
R:R19 converts FRAC

R:R2O converts Big INT

R:R2l converts Big FRAC or Fine INT.

R:R22 converts Fine FRAC.

Called by:-
t(operand to Al, and A2 if double length)
CF AI4, R:Rnn

Where the operand is double length the more significant
half is in A1.

Pacrr I | . -

In Al, A2, A3.

Mantissa more significant part A1.

Mantissa less significant part A2.

Exponent in A3.

Exi-t:- to instruction following,
CF At4, R:Rnn

Registers Used:- None.

rr/2o

1I.4.f2. REAL to Fixed Poinr Conversions

Module IDENT:- RTLR23

Control Routines:- R:R23, R;R24, R;R25

Funclions: -
Conversions from REAL to fixed point forms

R:R23 converts to FRAC

R:R24 converts to INT

R:R25 converts to BYTE

Ca11ed by:-
./ - .\(operand bo Al , A2, A3/

CF A14, R:Rnn

Result:_- fn Al. For R:R25 the BYTE is in the fess
signi-ficant half of AI and the more significant
half is zera.

Exit:- to instruction following the

CF 414, R:Rnn

Errors Detected:- Fixed point overflow on conversion

- error no. 7-

Registers Used:- None.

u/2r

II.4. 13. ABS REAL and Negate REA_L

Module IDENT:- RTLR26

Control Routines:- R:R26, R:R27

Functions : -

R:R26 Negates a REAL number

R:R27 performs ABS (REAL) number

i.e. negate if negative.

Called by:-
/qoperand j-nto Al, A2, Aù
CF A14, R:Rnn

Result:- In AL, A2, A3.

Exit:- to instruction followinq the,
CF A14, R:Rnn.

Errors Detected:- Floating point overflow

- error no. 6-

Overflow is only possible when ABS or negate operates on

the maximum negative REAL val-ue, when it arises because

one more negative value than positive can be held in a

REAL.

Registers Used:- 47.

LL/ ZZ

II.4.14 Ovelflow clrecking

Module IDENT: RTLR28

Control Routines:- R:R28

Functions:- Checks for overflow when OPTION O OV in use'

Call.ed by:- CF AI4, R:R2B

Exit:- to instruction followlng the

CF At4, R:R28

Errors detected:- fixed-point overflow

- error no. 5

Registers used:- none

called after any assembler instruction which may set overflow:

add, subtract, multiply, divide, twors complement, increment

and left-arithnetic-shift (possibly due to narrowinq) '
May be re-coded to take different action if overflolf occurs.

r.ï/23

II.5.

rr.5.l.

OPTIONAI, EXCLUSIOI{

Introduction

When the control routines are link edited into a

program or task from an object library selection
of onlv fhose môdufes which are rerrrri rod wi l1 he

automatic.

This section is provided as a guide to selecting
a subset of the control routines when they are to
be bui-lt as a shared area for use by tasks to be

built 1ater.

Tr /1A

TABLE II.5.l. - Oplional Requirement

Of Control Routines

I4ODULE

IDENT

CONTROT

ROUTINES

V'IHEN

REQUIRED

NOTES

RTLROO R:ROO

l^**'RTLROI R: ROt , R: RO2

RTLRO3 R:RO3rR:RO4,

R:RO5 rR:RO6,

I(: I(LJ ,/ .

Whenever array bound

checks apply.

(a)

RTLROB R:ROB Whenever SHA,SHL

nnara.}-nr< rrqoÀ

RTLRO9 R:RO9

R:RlO
ALWAYS

RTLRll t(: l<t_t If OPTION O TR used

RTLRI2 R:R12,R:Rl3 If REAL or LABEL

comparisons made

RTLRl4 R:R14,R:RI5 1I KEiAL aOOr tl_On Or

subtraction used

(b)

(c)

RTLRI6 R:Rl5 If REAL mul-tiplv used (b)

(c,

RTLRIT R:Rl7 IT REAL divide used (b)

(c)

RTLRl8 R: R18,R:R19,

R:R2O,R:R21,

R:R22

If any conversions from

fixed point to REAL.

(c)

RTLR23 R:R23rR:R24,

K:KZ)

If any REAL to INT,

FRAC or FRAC conversi-ons

(cJ

RTLR26 R:R26,R:R27 If ABS or negate

operators used on REAL.

(b)

(c)

RTLR28 R:R2B If OPTIONO or used. T.r /25

TABLE II.5.1. - IJOTCS

Note:

(a) Array bount:l checks applY if '

(f) OPTIOI{ Oes or OPTION OBC used

or (ii) Arrays used in applicatio:rs FITL/2 whr:re 'n'y otl.er
action than reading from ARRAYS of II'IT, EY'I.E, I'RArl

or REAL is involved.

(b) R:RI5,R:R16 and R:R17 all cafl R:F.26 ar'd/or
R:R27 so RTLR26 must be included if any cf
RTLR2I4, RTLR2I6 or RTLR217 are"

(c) On machines with floating point hardware

RTLRl4, RTLRI6, RTLRl7, RTLRIBT RTLR23,

may all be omitted if
OPTION O FP is used at all- times.

rr/26

ïîr.2

TII. I. INTRODUCTION

This appendix discusses the conventions of the assembler code used

on the PSOO series, both compiler generated code and hand-

written code - so that a user may understand the compiled

code of his system. It also describes how to write code

statements in RTLr/2 modules when this is necessary, in order,
for example, to drive peripheral devices. We start by

describing in detail, r,he utilisation of the stack at nrn-time.

TIIE STACK MECHANISM

It is assumed. that the reader is familiar with the general notion
of a run-time stack which mirrors at any one time the dynamic state
o1-- a task, i.e. the nested structure of procedure calls which

exist at that time - toqether with the local data those procedures

are usinq.

Program workspace grows by working downwards from the high
addressed end of the stack with procedure data for successively
nested proced.ure calls.
The stack data for each procedure is arranqed on each side of
a LINK CELL as shown:

low

PROC ENVIRONMENT

TOP OF STACK

).2, AI2 Poiryts here
addresses / high addresses

unused
VÙORKING

STORAGE

LOCAL

VARTABI,ES

LINK

CELL
PARAMETERS

data for
calling
Proc. (

(
t

LOGICAL

fir/r

III.2.1. The LINK CELL

The link cell conÈains 2 vrords:

The lower addressed word contains the address of the link ce1l
(word O) of the procedure which called this procedure. It is
pointed at by register Al2 and thus contains the value Al2 is
to take on procedure exit.
The higher addressed word contains the link address, i.e. the value

register P is to take on procedure exit.

T.1T..2.2. IOCAL VARIABLES

Local Variables are those declared within the currenE RT'L/2

procedure and for loop conLrol data. This data is stored as

it would be in a DATA brick except that BYTE variables occupy

whole words - the more significant half of the word is unused.

Local variables are addressed using indexed mode on Al2. They

may be over-written after the procedure has completed.

III.2.3. PARAMETERS

These are the RTL/2 parameters, stored in the stack before
calling the current procedure. Within the procedure they
behave as d,o the local variables.

rrr/2

IlI .2 . 4. IVORKING STORAGE

The amount of workinq storage in use is varialcle in size,
beingr zero on entry to a procedure and accommodating

temporary d.ata (e.9. partially calculated expressions,

temporary dumps of registers) as required. All- data

is added or removed from this area bv use of the local
variabl-e pointer , AL2.

Al2 is set up to point to the current link ce1l on

procedure entry. An important case of workinq storage use

is when one procedure calls another. Parameters for the

called procedure are placed in the working storage of the

calling procedure, which then enters the called procedure.

The latter uses control routine R:ROI which creates the
new environment and sets Al2 accordinqly, the parameters in
working store becoming identical with the parameter area of
the new procedure. Any procedure result is left in the

registers Al upwards on exit from a procedure. The

procedure exit control routine, R:RO2, adjusts At2 and returns

to the point of the procedure call.

I1I.2.5. Dunny Link CeIl

The high-addressed end of the stad(region contains a single
word pointing to itself, which serves as a dummy (half) Iink
cell to end the chain of link cells pointed to by al2.

rrr./3

IIf . 2 . 6. Exanrpl-e of Stack Usaqe

fn an RTL/2 task where:-

(a) the most basic procedure is PROC A O ;

(b) A calls PROC B(rNt X, REAL Y);
(c) B cal-Is PROC C(INT P, BYTE Q, IÀBEL R) INT;

to compute an integer result,
the st,rck would look as shown in FIG.III.2.I.

The arrows show the pointers used to unwind the
stack when procedures return (by RETURN ENDPROC), or
GOTO statements with a IÀBEL variable are executed.

The rightmost dunmy link cel1 terminates the chain of
pointers.

Note that the sarne principles apply if a procedure is
recursive, i.e. calls itself directly or indirectly. A new

l-ink cell, local variables and workspace will be added,

regardless of whether the cafled procedure is already active
or noc.

ILI/4

FIG. III.2.1. - STACK Mechanism Exa*rnple

When A is about to call- B

Vùhen B is about to call C

i,rlhen C is about to RETIJRN to B

V'lhen C has RETURNed to B.

Drnnmy

Link
Cel1.

higher addresses

->

a\

UNUSED
REAL

Y

INT
X

LOCALS
u.r'
A

LINK
CELL
â

\

Al2

AL2 r>r-
LABEL

R

BYTE

a
INT

P

B

WORK

SPACE

LOCALS
OF

B

LINK
CELL

B

Y x
LOCALS

OF

A

LINK
CELL

I

ALZ

c
I/'fORK

SPACE

LOCALS
OF

c

LINK
CELL

c
R)l P

LOCALS

OF

B

LÏNK
CELL

B

Y x
LOCALS

OF

A

LINK
CELL

A

t

When C is in progress

AI .- \. /
a-

-\\

LOCAI,S
OF
?

LINK
CELL
c

R u P

B

WORI

SPACI

r.ocArs
OF

B

LINK
CELL

B

Y x
LOCALS

OF
A

LINK
CELL

A

I

rfi/5

I7ï.2. /. AL4 Area

A1,X is used when calling the control routi-nes

and any FORTRAN subroutines. Tt points to a

logically distinct stack area which does not
have to be part of ttre stack used by the RTL/2 compiled

code.

LLI/ b

III. 3. STACK SIZE ESTIMATION

It is j-mprotant that the user be able to estimate stack size

correctly. Too little stack will causer task failure and may happen

under unusual and untested circumstancers when the procedures in the

task are nested to greater d.epth than rrormal. Too much stack

is wasteful in core space.

Two techniques may be used:

(i) Initial over-estimate. The task may be run initiallv with an

over large stack. An integer in SVC DATA is used by the procedure

entry control routine(R:ROI) and is updated to the lowest point
in the stack reached by the linkcell/working storage used.

After the task has n:n for long enough for the user to be

confident that all possible routes have been taken through the

various procedures, (including error procedures), this location
may be inspected. 2AO bytes is adequate for tasks of straight-
forward type. Note that recursive procedures can use more

stack than you expect. If IWRT or IWRTF is used for example it
should. be tested with the maximum nurnber of significant digits
that the task can produce, e.g. 5.

(ii) Accurate calculation. It is possible to calculate the displacement

between successive link cells by inspection of compiled (assembly)

code, and thereby to calcul-ate (by inspection of aI1 possible
routes) the lonsest stack usage. This is tedious in complex

programs. The method is as follows:
Add up the (n) values (see IT.4.2.L.) for all
procedures in a calling chain - allow for
recursion by multiplying by the maximum depth of
recurslon - and find the maximum value this total
can have, i.e. the stack usage of the most demanding

calling chain. Remember that this figure is the no.

of words of stack, and that it must be added to the

allocations made by the base program

and the 414 area used bv the control
for SVC DATA bricks
r.outines.

rfi/7

ITT.4 REGISTER CON\ENTTONS

The usage of ttre PBOO registers in compiled RTL/2 code

is as follows. Register usage within particular control
routines is specified in detail in II.4.

III.4, I Register O (P) is ttre prograrn counter.
Register AI5 is the hardware stack pointer. P and Al5 are

not referred to explicity in the compiled code.

III .4.2 Registers AlrA2rA3 are used together for:-

(a) Passing back procedure results of all types.
(b) Parameters, particularly REAL or IÀBEL, to control

routines.
(c) Transiently to move a REAL or IÂBEL to or from the

stack.

Registers AlrA2 are also used for:-

(d) Double length operations, whether involving control
routines or not.

Register A2 is also used for:-

(e) Holding subscripts and add.resses during array addressing

without bound checkinq.

Register A3 is also used for:-

(f) Generation of variable length shift instructions which

are executed by E)(R 43.
(S) Holding subscripts during array addressing with bound

checking.

ITI/B

rrr . 4. 3. Registers A4rA5,A6 and A7 are used together:_

(a) As an extension of the workspace part of the stack.
The sinplest expressions involving no procedure calls
and no conditions do not reguire any workspace in store.
Any registers in use as a ttstack extension" must be

durnped into the stack before procedure calls or branehes
(in conditional expressions) or control routines which

use A4,A5,A6 or A7. Tleis drurping is performed by
instructions inserted by the compiler.

Register A6 is used:-
(b) During procedure entry as a pointer to the base of the

parameters, and thus to where the new link cell should
be planted. A6 is used in the CF instructions used to
enter P*II'/2 procedures and the procedure entry control
routine, R:ROI.

TTT/9

TII.4.4 Registers A7 and AB are used:-

(a) To hold parameters of SVC PROC calls. (see IfI.l.6.).

Register AB is also used:-

(b) As a pointer to the second. operand when diadic operations

are performed on data types that occupy more than one word.

(c) Transiently to hold a byte during byte arithmetic.

III.4.5 Reqisters A9,AlOrAll are used:-

(a) Transiently within the compiled code

and

(b) By the conÈrol routines, also transiently.

Register A9 is also used:-

(c) To hold an address, either an intermediate address in
a complicated expression involving records, or as ttre
result of an array-bound checking control-routine.

Register AIO is also used:-

(d) To hold an address, either an intermediate address in
a complicated expression involving variable subscripts,
cr as a parameter to an array-bound checking control-routine.

fTI .4.6 Register Al2 is d.edicated to being the local variable pointer.
It, points to the lj-nk cell of the currently executing procedure

and is used to access parameters, local variables and sÈack

workspace.

1TI.4.7 Reqister AI3 is dedicaÈed to being the SVC DATA pointer.
It is used for all access to SVC DATA brick items.

ITIl10

III . 4.8 Register AI4 is dedicated to pointing to the conÈrol routine
area of the stack. Control routines (except R:ROI and R:RO2)

are entered by CF AI4r... instructions. Itre size of the

control routine area of ttre stack includes an allowance for
the standard error procedure, RRGEL, (which may use the A14

part of the stack to successfully nonitor an overflorr of the
AI2 part,).

If routines in other langr:ages are to be called from FrTL/2

by CF AL4r... (a bridging procedure will be necessary)

then the stack requirements of using such routines must be

added to the "414 allocation".

TTI/LL

rrr. 5.

III. 5. -1 .

Irr.5.2.

rrr.5.3. FRAC

RTL/2 DATA FORMATS

The standard F(Tï,/2 data types

as follows:

BYTE

are implemented on PSOO

An RTL/2 BYTE is a byte of PBOo storage. Note that P(TL/2

treats all BYTE variables as unsigned which is usually
the case in PSOO character instructions. Bytes within
a word addresseô left (even address) to right (odd address)

RTL/2 BYTE stôraqe follows this convention.

INT

Nr RTL/2 INT is represented by a PSOO word in the standard
2's complement form:

An RTL/2 FRAC

word thus:
is represented by a 2 's complement 16-bit

Thus O.5BO is represented by Hexadecimal 4@O

-1.OBO is represented by Hexadecimal SOOO

integer
point

sign bit 15 bits fraction

TTT/L2

Trr.5.4.

The standard 3-word format of
the floating point hardware.

LOV'EST ADDRESSED WORD.

PSOO is used, conforming to

NEXT ADDRESSED WORD

unused lless significant part of
it always I mantissa
zeto

HTGHEST ADDRESSED WORD

sign I exponent
bir

exponent as 2t s complement integer.

fir./L3

IIf-5.4.1. Negative Rea]- Nurnbers are held. with a negative
(2's complenent of double length) mantissa, and

a positive or negative exponent as appropriate.

III-5- 4-2. zeyo is represented as 3 words of zero

o.o* (2**o)) .(i. e.

rrr. 5.5. REF -)

n** |
rr *J

variables are

addresses.

all represented as 16-bit

rrr. 5.6. LABEL

Three words are used:-

Lowest addressed word:

address to go to (new value of 'p')

Next addressed word:

link cell address (new value of AL2)

Highest addressed word:

return address of the procedure

in which the IÀBEL was set.

rrr/L4

rrr .5. 7. Intermediate Modes

All the transient, double-length, forms use the
standard double length arithmetic format of P8OO.

low addressed word high address word

unused
always

bir,
zero.

Only the position of the assumed binary point differs:-

For fine FRAC it is at (A).

For fine INT and big FRAC it is at (B).

For big INT it is at (C).

TTT/L5

rrr.).ô. RECORDS

rl_l_.5-v. ARRAYS

P<TL/2 records are laid out as a succession of components

each with its own format as described in III.5.l.-7 and

IfI.5.9. The record has no extra data structure, except

that padding bytes are inserted, if neeessary, to ensure

that all non-byte components start at an even address.

Padding is also inserted so that all records, except those

containing only bytes (not arrays of bytes) always start
at an even address.

Arrays are represented as follows:

L A (r) A(2) A(3) A (n,

\4there A(l),A(2), etc. are the elements and have their
type and structure as alreadv defined. L is a sinqle
word defining the length of the array as the nurnber of
elements. L is a 16=bit integer and is stored at an even

address. Array elements are all stored at even addresses

except when the array is an array of BYTEs or an array of
records which only contain BYTEs; other arrays of records

may thus contain paddinq bytes. The address of an array
(i.e. a REF ARRAY) is the theoretical address of the

zeroth el-ement. Only in arrays of one-word elements is this
the same as the address of the lenqth word.

Multidimensional arrays are compiled, in the standard RTL/2

sty1e, as arrays of REF arrays as many times as i-s necessary.

rrr./L6

IIT.6. BRICK LAYOUT

P.TL/2 bricks are compiled as follows.

III-6.1. PROC bricks (other than SVC PROC)

An RTL/2 PROC is compiled wj-th a call to control routj-ne R:ROI

at the head. This routine sets up register Al-2 as appropriate.
RETURN statements, wherever they occur are compiled as calls to
control routine R:RO2 whether or not a result is
returned. Details of control routines are given in Appendix II.

Local variables used by the procedure are implemented in the

stack. They are thus addressed using register Al2, in indexed

mode. Data brick variables may be addressed directly, unless the

data brick is an SVC DATA brick; in ttre latter case variables
must be addressed using register A13 in indexed mode.

II1.6.2. DATA bricks

An RTL/2 DATA brick is oompiled with the data laid out in the

order defined in the RTL/2 text. A padding byte is inserted if
necessary before any item which must start at an even address.

SVC DATA bricks are considered to be mapped in the same vray,

although SVC DATA bricks cannot be addressed other than via
register Al3 (to ensure that the appropriate task's copy is
used), and cannot be allocated storage by an RTL/2 definition
of them.

.il i

rT.r/t'7

rrr. 6. 3. STACI(Bricks

An RTL/2 stack brick is compiled as an uninitialised block

of core, with the length of the remaining space, in bytes,

in the first word.

N.B. the RTL/2 statement STACK FnnD 2AA

nrndrrcaq fho fnl Inr^rinc.

-Ll_t.t).r+.

I annl-lr r^rnrÀtearY sr

containing the
number 198.

The stack, if referred to by

by the length word address.

SVC PROC bricks.

a STACK variable, is addressed

There is no RTL/2 means of compiling an SVC PROC brick.

See section IIr .7.6. for details of the code compiled for

SVC PROC calls.

l-98 bytes (contents undefined)

IIIlI8

LLL. I. CODE STATEMMJTS

This section summarises the main features of writing coDE

statemeûts in RTL/2 modules. Familiarity with the assembler
language of the pSOO series is assumed..

III. 7. t. General principles

CODE statements or 'code sequences' have a syntax which
follows the overall standard as described in the F{TL/2

Language SpecificaÈion Manual thus:

codeseq ::= codeheading codeitam
codeheading : := digitlist, digitlist;
codeitem : : = ISOT-character-other-than-trip-l-or-trip-2

|trip-l letitemlname.
letitem : : = name

| ""*l.r I s tring I comment
I separaÈor.

fn the PSOO implementation the characters tLripl' and 'Èrip2,
of ttre specification manual are & and @ respectively.
The trip characters are used to access RTL/2 defined variables
or LET nanes, etc. from within a CODE statement, as descrjjced
below. rn addtion to the two trip characters, the presence
of a pair of dol_l_ar signs ("$$") has special siqnificance
in this implementation. (See III .7.7.)

LII.7.2. CODE body

A code statement is, as far as an RTL/2 compiler is concerned
simitar 1n nature to other statements.When it is entered during
the execution of a procedure there will be no workinq storage
in use on the Ftqc! (i.e. the workspace area and registers A4,

A5'A6 and A7 will be free) and. none should remain in use when it
is completed. The compiler will make no assumptions about the
contents of registers except. AI2rA13rAl4 on exit from a code

staLement.

TTT/L9

III.7.2.L. CODE heading information

The progranmer must tell the compiler how many byces
of storage to reserve in-line for the assembler code

between "CODE" and "&RTL". This 1ength must be exact.

rrr .7 .2.2.

Secondly he must state how much workspace in the RTL/2
stack is to be ueed by the CODE statement in the worst
case. Ttris i-s so that this requirement will be checked
(when the procedure containing the CODE statement is
entered) by control routine R:ROl.

These two figures appear after the kelnvord, CODE , thus:-

3QDE 42,2;

:
&RTL;

is a code sequence occupying 42(decimal) bytes, and

using, at most, 2 bytes of stack workspace.

Use of RTL/2 ftems

In between CODE i and. aRTL; the programmer may write
any legal assembler statements. Care should be taken to
conform to the assembler statements layout requirements.
No editing, other than that described here in response
to trip characters is performed by the compiler.

Trip-1 ('&'), trip-2 (,@') and. "$$" are recognized by the
compiler and displacements, values or symbols are substituted
for RTL/2 items. The following sections describe this in
detail. Note that it is the progranmer's responsibility to
use RTL/2 items in a correct manneri for example no

automatic dereferencing will be added by the compiler.

rr.r/2o

TII.7.3. Local- Variables and Parameters

Any RTL/2 defined local variable or pararneter of the

current procedure (including FOR loop control variables,
and those declared in inner BLOCKs or FOR loops, where

in scope) are accessible in CODE sections.

The compiler substitutes in response to:-
a variable-name

the displacement of the variable from the current link
cel-l-. The displacement will be positive for parameters,

negative for other locals.

Thus to access a local INT x we can use:-
(i) LD A4, &X,A12

since 412 points to the link cel-l.

The add.reSs Of lha rzrri:lr'la n=rz be CalCUlated, if regUired,

byt-

(ii) LDKL A4, &X

ADR A4,AT2

leaving A4 pointing to X.

In both examples the compiler will substitute a numeric

displacement, so that if x were -2 bytes from the link
cell: -

LD A4t-2,A12 is produced for (i),
and

LDKL A4,-2

ADR A4,AI2 is produced for (ii).

r.r.t /2L

III.7.4. DATA Brick Variables (not SVC DATA)

Data brick variables may be add.ressed directly from
within CODE statements by:-

a variabl-e name @ data brick name

The compi-ler substitutes the offset within the brick
for the variable. The data brick name is not modified if
EXT or ENT , othenrise a compiler-generated slrmbol (by

which the data brick is known in the compi_Ied code) is
substitu'bed.

For example, glven:-

EXT DATA DBX;

REF ÏNT B;
a

ENDDATA;

DATA DBLOCAI;
:

ÏNT C;

ENDDATA;

l-ho qacrran^ô --

coDE I,O;
LDKL A4, &CGDBLCCAL

sT A4, &B@DBX

&RTL;

might compile into:-
LDK] A4,R3342+/IO

sT A4 |DBX+/ 4

rrr/22

III.7.5. SVC DATA ltems

Variables in SVC DATA bricks are denoted in CODE sequences

as for DATA bricks:-

a variable name G brick name.

and a similar slmbolic expression will be substituted.
However, the brick address wiII be the offset of the brick
from ttre start of the SVC DATA area, register A13 must be

used in indexed mode to access the variable.

To access ERN in the standard SVC DATA brick:-

SVC DATA RRERR;

LABEL ERL;

TNT ERN;

PROC (TNT) ERP;

ENDDATA;

ttte followinq might be used:-

LD A4, S.ERI{@RRERR, A1 3

giving in the compiled code:-
LD A4,RRERR+/6,AI3

RRERR is defined at link edit time.

IIT.7.6. SVC PROC calls

Calls to SVC PROCedures are compiled as:

lst parameter (if Xraol to A7

2nd or onlY Parameter to AB

LKM

DATA PRNAI,TE

r^there PRNAI\{E is the name given to the RTL/2 SVC PROC,

and is resolved at link edit time to be the correct
LKM number.

If the procedure is declared as returning an integer resultrthe
resuLt wiII be assurned to be in 47.

Tr.r/23

TIl .7 .7 . lrlorkspace

Workspace on the current RT\/z stack may be used as

required in a code section, as long as the worst-case

usage is recorded as the second number after the key-word

CODE (see II -7.2.)

The special trip character sequence of "$$" may be

used to access workspace locations, as follovrs:-

sr A1, $$,A12

sr A2 ,ç$+2 tAL2

"$$" is translated by the compiler to the (negative)

offset of the lowest addressed word of workspace

available to the CODE section. This is cal-culated

as mj-nus (Iocal space + CODE workspace) .

Failure to declare such workspace in the CODE heading

may result in the assembler written statements

corruptinq the Local variables or link cells of the

current or other active procedures.

r11/24

III.7. B. Record Componenis

An RTL/2 component selector may be used to address

a record component. If vre have:

MODE COMPLEX (INT RL, IM)

and we have in a data brick, DATATHREE:

COMPLEX C

then C. IM may be moved into register 41, in a code

section, thus:

LD AI,&C@DATATHREE + &IM@COMPLEX

Note then &C@DATATHREE gives the address of the first
byte in C. &IM@@MPLEX gives the displacement within
any record of mode COMPLEX (2 bytes in this simple
case).

Record structure layouts need not, therefore, be known

explicity by the CODE section author.

The length of a record may also be retrieved symbolically,
which can be useful in addressing arrays of records. The

length of any record of mode COMPLEX wilL be inserted in a

code st,atement in place of :

&COMPLEX

Note that record lengths will always be padded out to a

whole nurdber of bytes unless the record only contains

bytes.

rr.r/25

III.7.9. Arrav Element and LENGTH.

Array elements are always stored at an address:

Array address * (element number * element size)
Array addresses, i.e. the address the compiler always

substitutes for an array identifier, are adjusted so

that this ùs so. An arrav address is thus the byte

address of a non-existent zeroth element of the arrav.

II1.7.9.1. For example, to load the BYTE, AB(I), gj-ven an ARRAY

O BYTE AB in a DATA brick, DATAFOUR, and a local INT I,
we miqht use:-

A9, &r,A12

A1, &AB@DATAFOUR,A9

For arrays of other types the sr:bscript would need

multiplication by the element size before use as an

address index.

LII .7.9.2. In a more elaborate case of a record arrav:

MODE COMPLEX (TNT RL, IM)

ARRAY (fO) COMPLEX CC in DATATHREE then

CC(2).IM could be accessed thus:

LD Al, &CC@DATATHREE +SCCMP LE X+ &COMPLE X+ &IM@COMPT,E X

the 2nd element being 2 record lengths on from the

arrav address.

III.7.9.3. Array LENGTH words may be accessed at an address two

bytes lower than that of the first array e],ement. Only

in the case of INT, FRAC,REF, PROC or STACK arrays is
this the same as the array address.

LD

LC

rTr/26

fII. 7. lO. Bricks

The starting address of a DATA or pROC brick
may be accessed simply by trip-l then RTL/2

identifier, êg.

LDKI A]-, & BRICKNAME

IIr.7.1l_. Control Routines

These may be used without restriction. External
references should not be written to satlsfy the
linkage editor since they are output by the RTL/2

compiler.

Refer to Appendix If for detailed specifications
of the control routines. When called from CODE

sections particular attention must be paid to
register usage.

fir/27

ITI.7.L2. Procedure Cafls

III.7.L2.L. Procedure bricks may be called from CODE sections by

their FITL/2 names e.g.

cF 46, & PROCÎIru,!E

III.7.L2.3. Parameters must be stored in the stack workspace and

Parameter space should also be added to the workspace

requirement so that, for example, a call to

PROC PQR (INT T,J) ;

from a CODE section might look like the followinq.

coDE ...,...î
lst parameter to Al
2nd naramotef to A2

sr A1, $$+1O,Al2

sr 42,$$+8,A12

LDKL A6,$$+6

ADR A6,AL2

cF A6,&PQR

&RTL;

(say)

(saY)

rJ.r. /.L2.+. Procedure results may be accessed directly from A1

(plus A2rA3 if multiple word. results). The parameters

will be intact after return and cart be accessed at
the same offsets from 412, alttrough their values may have

been modified by the called procedure.

Procedure variables are used in the same \^ray as any

other data variables. V'lhen used to call procedures in
CODE sections the indirection must be added (Perhaps

by use of CFI rather than CF).

rII.7.L2.2. A6 should be first initialized to point to the "$$*6"
word and 8 bytes of
in the CODE heading

and from PROCNAME to

stack workspace should be included
for the CF instructions to PROCNAME

R:ROl .

rrï/28

rrr.7.12.5.

III.7.13 RT L/2 Labels

Label variables are accessed in the same way as ottler
variables.

Literal labels outside the code statement may be accessed

using the usual '&r facilitY' e.g.

ABL &FAIL

causes a jurnp to the RTL/2 label FAIL, which must be in
the same procedure brick. Literal label-s may also be

defined insid.e code statements so as to be rendered

accessible to RTL,/2 statements htithin t]le same brick,
thus:

&LI&:

may appear in a CODE section allowinq one to write:
GOTO Ll or LABELVARIABLE: = Ll

elsewhere in the same procedure.

TII.7.L4 Constants

TII.7.L4.L Constants mav be referred to in their RTL/2 forrn within
a code statement. Ttris has two advantages:

(i) Constants named with RTL/2 r.ET statements may be

used under their r'TlT names - thus ensuring that
code sections are automatically edited if LET

statements are changed.

Ttre user can be saved the tedium of calculating
internal representation of real or fractional
constants and can use, for example, octal and

binary forms of integers not available in the

assenbly language.

(ii)

REAL, INT and FRAC constants may be written as 'trip-Il
fconstantt where rconstantr has its usual P.TL/2 syntax.

rrr/29

III.7.L4.2. A string is Lranslated into the symbolic address in
the string pool of the (theoretical) zeroth element

of the string (which is stored as a BYTE array).
The string wiII be added to the string pool if it is
not alreadv present.

III.7.14.3. Example of Constants in CODE

RTL,/2 text: -

LET NTASK=I2;

coDE ... ,. .. i

LDKL A1, &}trTASK

LDKI A2, &''STRING''

e.tr?TT..

Output from Compiler

LDKL AL,/C

LDKL A2,R:POOL* ,.,,

where the string pool, R:POOL, contains

DATA 'STRTNG..

rrr/30

III.7. 15. Summary

The transformations which the compiler makes to RTL/2 items

in code statements are as below. Prograrnmers may use them

in any way which is valid assembler, bearing in mind the

meanings which the table below implies.

RTL/2 Text corresponding Assembler

&integer I literal value i.n octal
afraction

I

&string I symbolic address of conceptual zero

I
element of string in pool

&name&: I tabel followed by : (colon)

&&,&@ | ar@ respectively
&identifier I depends on use of identifier as below

&modename I literal value of length of mode in

I decimal

tJcricl<name I symbolic address of sEart of brick
aliterallabelname I symbolic address of label
alocalname I displacement of variable from current

Iinkcell (i.e. from contents of register 5)

&component@mode I displacement of comtr>onent from start of
record

aqlobalname
@databrick I symbolic address of variabl-e

$$ | offset from 412 of Lhe lowest addressed

workspace word available to CODE section.

Tr-r/3L

TTT /12

IV.].. INTRODUCTTON

Ttris appendix gives details of SVC DATA bricl<s expected

by the control routines and RTL/2 base program, as

supplied for Philips PBOO.

rv.2. sTArrpARp RTL/2 BRTCKS

These bricks are described in PITL/2 Standards.

IV.2.1. RRSTO

Initial- values of IN and Otlll are RRIPF, RROPF

respectiveJ-y which procedures call RRGEL with error
numbers of 98 and 99 respectively.

TV.2.2. RRSED

Initial values in RRSED are:-

IOFLAG : : O

TERMCH : = IIEX 80 (end-of-stream)

TV.2.3. RRERR

Initial values in RRERR are:-

ERL, points to exit from program

ERN: =O

ERP : = RRGEL.

TV/L

IV.3. NON_STA}TDARD BRICKS

IV.3.I. RRSTK

This has the specification:-

SVC DATA RRSTK;

INT STKL@,

STKLIM

}'ISPBAS;

ENDDATA;

STKLO is the lowest reached sÈack addressed since
the program began. Its initial value is tJle highest
address in the stack. It is used to monitor maximum

stack usage.

STKLIM is the l-ow address limit of the stack. It is
used to checl< for stack overflow.

VùSPBAS is the address of the low end of the current
procedure workspace. It is used to provide a dump of
the procedure workspace.

The addresses stored in STKLO, STKLIM, and $ISPBAS are

aII word addresses and point to one word below the

lowest used, Iowest allowed and lowest workspace \ârord

respective ly.

rv/2

IV.3.2. RRERRX

Ttris has the specification:-

SVC DATA RRERRX;

ÏNT LÏNENO'

ENDDATA;

LINENO is t]:e latest RTL/2 line number when the

fR option is in use. Its initial value is zero.

rv/3

-r\f / A

