
PART 6 DEBUG

6-lT75 May 1983.

î75 l4ay 1983 .

INTRODUCTION

The debugging package DEBUG is used to help in testing prograns written in
Assenbler.

The user roay define breakpoints $rhere the package will suspend execution of the
user program. At a breakpoint one or more DEBUG commands nay be executed,
allowing the user to examine or modify registers or memory locations within his
program. This allows the user Ëo check the program, secÈion by section.

DEBUG makes Ëemporary changes to the program under test, which must therefore
be declared either memory-resident or sr^rappable. A re-entranL program cannoË be
used and debugged simult,aneously. The DEBUG package itself is re-entrant; it
creat.es its workspace in the dynanic area of the program Lo be t.ested, so
several users (up to a maximun of 16) nay debug their prograns simultaneously.
However, it, is not, possible to debug a main program and its scheduled label
routines at. the same time, because the workspace may be corrupted between
queueing a scheduled label and calling it for execution, and this will confuse
the DEBUG package. It is in any case recomrnended not to use breakpoints I^rithin
scheduled labels, as DEBUG perforns all its input/output with waiÈ, t,hus
holding up execution of Èhe user program.

STARTING DEBUG

DEBUG is called by the FCL cornurand:
DEB (program-name)

which is described further in Chapter 1l of the MAS Manual.

DEBUG occupies 6K words in memory-resident area; it allocates a 2K word buffer
in the dynanie area of each program to be debugged.

T75 6-3 May 1983.

T75 6-4 May 1983.

PROCESSING

GENERAL

DEBUG establishes conÈrol of Èhe user progran by means of scheduled labels
which handle any inÈ,errupts produced by it. Ihe user may set up to eight
breakpoints within the boundaries of the program under test. A breakpoint is a
location wiÈhin the program where execution will be suspended, allowing the
user to perform DEBUG operations.

DEBUG's main functions are:

- Examine memory contents (Dlul comuand);
- Examine register contents (DR cornnand);
- Modify memory contenÈs (Wt'I conurand);
- Modify register content,s (I,lR connand);
- Read data from an external devlce (RE cornmand);
- Trace the execution of user program instructions (TR connand);
- Restart. the user program at a glven address (GO coromand).

These functlons may be execuled either unconditionally or conditionally, by use
of the IF command. Connecting the user progran to a level is optional; if it
is not done by the user it will be done by DEBUG.

ADDRESSING

lulemory location addresses may be specified in one of three ways:

- Absolute
- Relative
- Synbolic.

Absolute Addressing

An absolute address is indicated by a slash (/), followed by up Èo four
hexadecinal digits giving the address, e.g. /3A16

Relative Mdressing

A relative address is specifled as a displacement from Èhe start address of the
user program under test. It is indicated by an at sign (G) foll-owed by up to
four hexadecinal digits giving the address, e.g. Glf2n . Note that the first
address of Èhe progran is G8.

Sym.bolic Adressing

A syrnbolic address may be specified in one of two ways, either as an entry
point or as a syubol table narne followed by a synbol (a label). In eiÈher case
an optional decimal offset may also be specified.

An entry point address nay only be specifled if, when the program under test
was Link-Edited, the parameter DBUG=ENTR was supplied to the OPT control
st,atement. The syntax is:

$(entry-point) t {+ | -} (offset) l

175 6-5 May 1983.

For exanple:
$START
$ENTI+64
$ENrZ-2

A label symbolic address nay only be specified if the assembly directive STAB
was specified for one or more modules at assembly time and the parameter
DBUG=STAB, or Ëhe parameter DBUG=ENTR, was supplied to the OPT statement when
the program under test r^ras Link-Edited. The syntax is:

$(rable-narne)&(label) [{+ | -} (of f ser)]

(in which (table-name) is Ëhe name specified in the END assembly directive of
the nodule in which (label) is defined). For exarnple:
$r"IoD1&LAB023
$MODt&LABO3l+64
$M0D2eLAB60-2

BREAKPOINTS

The user may specify up to eighÈ breakpoints within his program. For each
breakpoint one or more DEBUG commands nay be specified; these commands will
only be executed when the breakpoinÈ is reached. Thus there are two modes of
operation;'ronline modett, in which DEBUG commands are executed irunediat.ely, andrroffline mode", in which DEBUG conmands are stored for later execution.

Online l'lode

This is the mode in which DEBUG starts operating. In this rnode any DEBUG

commands, except the IF commandr mây be enÈered and will be executed
imrnediately the command is t,erminated by (CR)(LF). Entering Ehe AT cornrnand
switches DEBUG to offline mode.

Offline Mode

In this mode all DEBUG commands are sÈored for later execution when the
breakpoint, r4rith which they are associated, is reached. Entering any of the
G0, RT ot / / commands causes the command to be stored, but also switches DEBUG
back to online node.

INPUT/OUTPUT

At initial entry, DEBUG reads all commands and data from, and outputs all its
messages t,o, filecode /01. Commands entered fron fileeode /01 are echoed t,o
filecode /02. If Èhe system abort,s Èhe program under test, and the abort
address is noÈ one of the breakpoint addresses, DEBUG ouÈpuËs the following
information Èo filecodes /0I arrd /02:

- program status word;
- aborÈ address, relative to the program start address;
- the contents of user registers AI to A14;
- (to the line-printdr only) a memory dump of Èhe user area.

The DEBUG eommands CI (Change Input Device) and C0 (Change Output Device) nay
be used if iÈ is required to input from, or output to, a device other than
filecode /01. The filecodes given in Ëhese commands must have been assigned
before the debugging package is called.

T75 6-6 Iaay 1983.

If DEBUG reads a conmand from a device other than the operat,or's console, and
finds an error in it, it print,s the command together with an error message on
the console and then prompts the user to enter the correct. command. The
remaining commands are then read frorn the other input. device.

DEBUG may read data from a specified device through the RE command. If the
device i-s not the operator's console, its filecode must have been assigned
before DEBUG is called.

Prompt,s

When DEBUG first takes concrol of a program, it assigns a tlro-character
identifier to it. From this point onwards, all messages associated with this
program are prefixed with this identifier; in fhis way, when DEBUG is being
used on more than one tesË progr€rm, Èhe user knows to which program each
nessage belongs.

Filecodes

The DEBUG package makes use of the following LKI"I instruct,ions:

The DEBUG package uses filecodes /01 for
line-printer; these fileeodes do not need
DEBUG is start,ed. Any oÈher filecodes may
output devices, but they must be assigned

PROGRAM ABORT

If the sysÈem aborËs the program under test, a
address is not a checkpoint address. If iE is,
Lrith that checkpoint is executed. If it is not,
(see "INPUT/OUTPUT") is printed. In either case
so that the user may continue debugging.

MONITOR CALLS

the operaÈor's console and /02 for the
to be assigned explicitly before
be used, for alternative input or
before use.

check is made that the abort.
Èhe command string associaÈed
the information given above
DEBUG is puÈ into online mode,

LKM Special
LKM I
LKI"I 3

LKM 4
LKM 5
LK}Î 7

LKM 25
LKM 35

(/ZgA4 - planted at each breakpoint)
(Input/ Output)
(Exit)
(Get Buffer)
(Release Buffer)
(Keep Control on Abort Conditi.on)
(nead Unsolicited Operator Message)
(Get Narne and Load Address of Test Prograrn).

T75 6-7 May 1983.

T75 6-B May 1983.

DEBUG COMMANDS

COMMAND SYNTÆ(

Eaeh command eonsisÈs of a two-character mnemonic, which nay be followed by a
space and one or more parameÈers. Each connand with its parameters must be
conÈained within a single line or input record; a continuation line is not
possible. A continuation character (fu1l stop) inrnediately after a command
allows another cornmand t.o be entered on the same llne; this may be repeated
until the line is full,

A command mnemonic must start at the first character position on a line, or the
first characÈer after a continuation characÈer. Spaces after a conmand (and
its parameters, if any) are not significant.

PAMMETER SYNTAX

If a command has more than one paraneter, the second and succeeding parameters
are each separated frorn the one preceding by one conma.

The following definitions are adopted in the description of the DEBUG conmands:

(memref) ::= {(absolute-address) | (relative-address) | (sy'nbolic-address)}

For the formats of these, see I'ADDRESSING" in Chapter 2 of this Part. The IF
cornnand has a special format for absolute addresses; see the command
description for details.

(register) ::= {Rl I R2 | ... I RI4}

These refer to the programmer's general purpose registers, Rl to Rl4
inclusive, R0 and Rl5 nay not be used.

(constanÈ) : := /(hexa-digit). .. (up to four digits)
(filecode) ::= /(hexa-dieit)[(hexa-digit)] (one or Èwo digits)

If the same syntacËic iÈem occurs more t,han once \.rithin the syntax of a
command, the occurrenees are distinguished by appending a declnal digit to the
descripÈion within t,he synt,ax brackets, for example:

DM (nennref l) ,(nemref 2)

T75 6-9 May 1983.

AT COMMAND (Define Breakpoint)

Syntax: AT (memref)

The AT comand is used to suspend tenporarily the execution of the user program
at the memory reference specified as a parirneter, thus defining a breakpoint.

Once the AT connand has been enlered, DEBUG switches Èo I'offline moderr; this
permi.ts the user to enter one or more DEBUG commands, which will be executed
when the breakpoint at the specified location is reached. The final or only
command must be one of GO, // or RT; depending on which of these is used, DEBUG

will perforrtr one of the following functions:

a) Last command is GO: Ëhe user program will resr:rne execution, after
DEBUG has executed the cornmand(s) associated with that string.

b) Last command is //: the user progrÉxln will restart. f rom its execut,ion
start address.

c) Last eoûmand is RT: any pre-defined instructions associ.ated with Èhat
breakpoint are executed and t,hen the online (interactive) mode is
entered. A prompt. is output on the operaËor's console, informing the
user that he may enter any DEBUG commands to be executed inmediaEely,
other than Èhe IF comrnand. The user may resume execution of his
program by entering the GO command.

When a breakpoint is encountered, its absolute address is printed out in the
format: BP: (absolute-address)

Breakpoints are held in a table, along with their associated connand strings.
The maxi.roum number of breakpoints that nay be defined at any one Èime is
eight. However, if eight breakpoints already exist, Èhe user may delete
unwanted breakpoi-nts by use of Èhe DB command, thus allowing himself to creat,e
alternative definitions if required. Address speeifications for breakpoints
need not, be defined in ascending order.

ResÈrictions

The breakpoinÈs defined nay not:
be nodified by the user prograno;
refer to memory areas within t,he user progran defined as DATA (the break-
point is not execuÈed);
contain commands to define a new breakpoint.

It is not allowed to test a main program and it,s scheduled label routines
simulÈaneously.

T75 6-10 l{ay 1983.

IF COMMAND (Conditional- Execution of DEBUG Coonand)

Syntax:

IF {(menrefl) | (registerl)}(operation){(memref2) | (register2) | (constant)}

(oPeration)::= t> | = | <)

The IF command is used in conjunction with the AT command. It allows condi-
tional execut,ion of the command string attached to the breakpoint being
executed. It need not inarediately fo1-low the AT command; any lntervening
commands will be executed uncondit,ionally.

The contents of one general purpose register or memory location are compared
with a constant or with Èhe contenEs of another reglster or metory location.
If the condition is TRUE the command string associaÈed with t,his breakpoint is
executed, otherwLse an impliciÈ GO command is generated to conÈinue executlon
of the program from the breakpoint.

If a memory locaÈion is specified as an absolute address, then it must have the
format: M nnnn

i.e. a letter 1"1 fol-lowed by a blank, followed by a hexa-decinal number of up to
four characters without a preceding slash.

T75 6-rl }Iay 1983.

GO COMMAND (Restart User Program)

Syntax: GO [(nemref)]

This comnand nay be used in trlro lrays:

a) In offlLne mode, during definitlon of a breakpoint. It will be the lasr
cornmand entered in Ehe stored string of coromands, Eo be executed when the
breakpoinË is reached; it also terninat,es Èhe breakpoint definition and
returns DEBUG to the online mode.

b) In online mode, ent,ered when the last. command execuÈed in assocation with a
breakpoinË !És the RT command. The user program is resÈarted ac the point
speclfied by (memref) or, if (nernref) is not specified, at the breakpoint.
If the user program has not yet been started by ttre | / command, the G0
comm4nd is rejected with the message:

REFUSED IN ON-LINE MODE

The specified memory address musÈ 1ie wlthln Èhe boundaries of the test
program, and not w'ithin an area deflned as DATA.

T75 6-12 l'lay 1983.

DB COMMAND (Delete BreakPoinÈ)

Syntax: DB (mensref)

The DB cornmand is used to delete a previously defined breakpoint, together with

the conmand string associaËed with it. A breakpoint may be deleted from the

breakpoint table ËË any tine; if the command is used Èo delete a currently

executing breakpoint, deletion is postponed until a GO cormand is executed'

175 6-13 MaY 1983'

DM COI'I}'IAND (l:np Memory)

Syntax: Dl"l (rnemref l)[r(menref2)J

The Dl'l comnand allows the user to examine any memory area within the boundaries
of the program under tesÈ. The durnp is output on the operator's console,
unless an alternative output device has been defined through the C0 command,.

The dr:mp is presented eight words to a line. Each line is preceded by an
absolute address as a multiple of /10. The dunp begins at (memrefl), rounded
down if necessary to an exacÈ nultiple of /IO, and ends aÈ (menref2), rounded
up if necessary to an exact multiple of /10 plus /E, rhus filling the last line
of the dunp.

If (mernref2) is onitted, one line is output including the contents of (nenrefl).

The dunp is in hexadecimal, and to the righÈ of eaeh line it,s charact,er
contents are also present,ed. To the left of each line the program name and its
two-character code (in bracket,s) are glven.

175 6-14 l,lay 1983.

DR COMMAND (lunp RegisÈers)

SynÈax: DR [(regist,erl)[,(register2)] l

The DR command allows the user to examine the contents of a range of the
general purpose registers Al to A14. Registers A0 and 415 cannot be examined.

If no parameters are specified, the contents of registers Al to A14 incluslve
w111 be dumped.

If only <regist,erl) is specified, only the contents of that register will be
durnped.

If both parameters are specified, the contents of (regisËerl) to (registerz)
inclusive will be dumped. NoLe that (registerl) must be less than <regisËer2),
but, not less than Rl; (regist,er2) rnust noÈ be greater than Rl4.

The dunp is ln hexadeclmal fornaÈ and, unless an alternaÈive output device has
been prevlously defined by the CO comnand, will be ouËput to the operaÈor's
console Èypewrit,er.

T75 6-15 May 1983.

WI,l COMMAND (I,Irice into Memory)

Syntax: l,lM (rnenref),(eonstantl)[r(constant2)] .. .

The WM command allows the user to place Èhe values of one or more constants
inÈo any memory area locaÈed within the test program's boundaries. The
const.ants are moved into contiguous memory locations, starting at the point
specified by (rnenref).

T75 6-16 May 1983.

WR COMI'IAND (lùrlte lnÈo Registers)

Syntax: !'lR (reglster) , (constant 1) [, (constant2)] . . .

The I,lR command allows the user to move constanÈ values lnto any of the general
purpose registers Al Èo Al4 inclusive. Registers A0 and Al5 nay not be altered.

The conÈents of <register) w111 be seÈ to the val-ue of (constantl); lf more
than one consÈanÈ Ls specified, their values wtll be moved inÈo consecuÈive
regisÈers, starting fron (register).

T75 6-L7 May 1983.

RE COMMAND (Read from a Device)

SynLax: RE (filecode),(nemref)r(consÈant)

The RE command allows the user to read a nurnber of characters into a buffer
from an external device. The nunber of characters specified by (constant) is
read from the specified (filecode) into the buffer whose start address is
specl-fied as (nenref). The filecode musÈ have been assigned before DEBUG was
lnvoked.

I'Ihen this command is executed, a standard read is sent to the Monitor hrith Êhe
specified fllecode, buffer address and nr:mber of characters. If Èhe user
requests data input from the console, a prompt 'READ' is printed on the console
1og, inforrning the user that DEBUG is ready to âccept the specified number of
eharacters.

The (constant) specifying the number of characters musÈ be specified in hexa-
decimal format.

T75 6-18 Iaay 1983.

RT COMMAND (Return ro Online Mode (Inreractlve))

Syntax: RT

the RT comand nay be used ln two rûays 3

a) In offline mode, during definltion of a breakpolnt. It will be the lasr
cornmand entered ln the strlng of commands, to be executed when the
breakpoint is reached; lt also terminates rhe breakpoint definltion and
returns DEBUG to Èhe online mode.

b) l{hen the conmands associated with a breakpoinÈ are executed, Èhis command
reÈurns DEBUG to the online mode, alLowing Èhe user Èo specify more DEBUG
cotmands.

T75 6-19 May 1983.

CO COMMAND (Change OutPut Device)

Syntax: CO (filecode)

The CO cornmand directs the output fron DEBUG to the device with the specified
filecode, This filecode must have been assigned before DEBUG was invoked.

T75 6-20 l4,ay I983 .

CI COMMAND (Change Input Device)

Syntax: CI [(filecode)]

The CI command causes further DEBUG input commands to be read from the device
with the specified (fileeode). The filecode must have been specified before
DEBUG was called. If no parameter is specified, the filecode of the operator's
console is assumed.

T75 6-21 May 1983.

TR COMMAND (frace)

Syntax: TR (chl)[(ch2)]

where (chl) and (ch2) are ASCII characters.

The TR command allows the user to assoclate an ASCII ldentifler of one or trùo
characters with a breakpoi.nt. The defined ASCII identifier is wrltten to the
defined output device every time the associated breakpoint ls encountered. This
is partLcularly useful for checkLng a branch instruction which may place the
test program into a loop.

The ASCII identifier may not be two spaces, nor contain a full stop (the
command continuatLon characÈer) .

T75 6-22 May 1983.

ru(CoMMAND (nxit)

SynÈax: ru(

This connand causes execution of DEBUG, and of the program under test, to be
abandoned. Execution of the RX command takes place inrnediaÈely, whatever mode
DEBUG is in at the time. ConLrol is returned to the Control Cornnand
Interpreter.

T75 6-23 May 1983.

ERROR },IESSAGES

UNKNOI^IN BP

The debugging package has been asked to delere a breakpoinr which elther hasnot been defined or has already been deleted..

BP DOUBLE DEFINED

An atÈempt has been made to define a breakpol-nt which already exlsts; to re-specify the breakpoint, it must firsr be dàleted (see,DB, command).

REFUSED IN ON-LINE I{ODE

The'rF'command was entered outside a breakpoint definition, or the,Go,
command was entered before the progrâm r{ras started by :'he , /i, command..

REFUSED IN OFF-LINE MODE

An attempr was made to define a new breakpoint without terminatlng the previousone with the 'RT', ,GO, or '//, eommands.

BP TABLE OVER-ELOLI

An attempt \'ras made to define a nerd breakpoint. when the maximum number, eight,had already been defined. The 'DB' eornmar,d *ry be used to delete an unwantedbreakpoint, to make room for the new breakpoini. In this $ray more than eightbreakpoints may be defined during the run of the resr program.

PARA},IETER ERROR

An illegal parameter was specified.

SYNTAX ERROR

Incorrect syntax specified for a conmand.

FILE CODE NOT ASSIGNED

An attenpt hras made to use a filecode which ï{as not assigned before DEBUG wascal1ed.

COMMAND UNKNOWN

The previously entered command is unknown ro this release of DEBuG.

SYMBOLIC PJF. ERROR

The specified synbolic address does not exist within the specified referencetable, or the table itself does not exist.
NO START ADDRESS

The load module to be debugged has no start address.

T75 o-z) May 1983.

COMMAND TABLE OVERFLO}J

There is not enough space in Èhe command table to record the corrmand strlng
being entered. The breakpoint currently being defined will be deleted from the
table, together wiÈh all its stored conmands. DEBUG is switched back to online
mode.

ERROR CQ. END OF CoMMAND INPUT STREAM

An error has occurred on the inpuÈ devlce, or the flle conÈaining the input
commands has been compl-etely read. DEBUG exits Èhe user program.

SP. CH. UNKNO}ùN

The special characters, used to identify input for a program being debugged'
are not recognised for any current progran.

T75 6-26 I,Iay 1983.

EXAMPLE OF USE

The following example shows Èhe use of DEBUG under MAS. The program EXI is to
be debugged in a foreground machinel filecode /01 is assigned to a terminal- and
filecode /02 to the line printer.

The progran EXI is very sinple; it reads a card lmage, co,rnts the number of
occurrences of the lettet 'A' in Èhe first 20 characters and ouÈpuÈs this
number. A sym.bol table, TABTAB, uras generated at Assembly Èime and kept aÈ Link-
Edit time by the OPT option DBUG=STAB.

The following commands set up and sÈart the foreground machine:

MACII-ID : SYSTEM DATE :

DCF WB,l
cMA 5,7000
sEG 1,1
FCD I ,DY18
FCD 2,LP
FCD /E0,DYl8
FCD /CO
FCD /C3
FCD /FO ,/CO,SUPERV
FCD /EA,/C3,I^JB2OO
DEN

BYE WB

The following commands and messages appear on filecode /Ot of the foreground
machine:

I{ACH-ID : I.IB DATE :
LOD I,EXI,/FA (or SWP Dil,/FA)
cNL EXl,44
DEB EXI
RUN EXl

DEBUG : EXI AT / AF46, COMM: ZA

These messages appear on the operator's console:

l"lAC:WB ,PROG:EXl ,KEY-INTSP.CH:ZA
M:Kr I,IB,EXl ,ZATAT /AF5C.DM GB,e5B.cO
MAC:lùB ,PROG:EXl ,KEY-IN,SP.CH:ZA
M:KI I^lB,EXl,%AIAT $TABTAB&NEXT.DR Rl,R2.G0
I.{AC:I,lB ,PROG:EXl ,KEY-IN, SP. CII:%A
M:KI WB ,EXl r7"A,,/ /

T75 6-27 May 1983.

The folLowing is output on the line printer:

DEBUG : EXI AT /AEE4,COMM: ZA
EXI (7"t) AT /AFsC.DM G8,G58.cO
EXI ('/"A) AT $TABTAB&NEXT.DR Rl,R2.G0
EXI (7"L) / /pXt (7"t) BP: AF5C
EXl (7"A) AEEO 0000 A001 AF5C 0001 0118 AFFo 4L42 4t42 \ ABAB
EXl (ZA) AEFO 4T42 4142 4142 4L42 4142 4L4L 4241 4z4IABABABABABMBABA
EXI (%A) AF00 4241 4241 4241 4241 4241 4241 4241 2020BA3ABA3ABABABA
EXI (Zn) AF10 2020 2020 2O2O 2O2A 2020 2020 2020 2020
EXl (7"t1 AF?O 2020 2020 2020 2020 2020 2020 2020 2020
EXl (%L) Ar30 2020 2020 2020 2020 2020 20200000 0000
EXI (/"t) BP: AF76
EXI (%L) À1 =FFEC A2 =0001

(These LasË two messages are repeated 19 times more, wiËh different values for
the register contents.)

T75 6-28 May 1983.

