
PART 3 LINKAGE EDITOR

3-1't7 5 laay 1983.

T75 3-2 May 1983.

INTRODUCTION

A prograrn nay consist of a (large) number of modules. Æter having been
assenbled or compiled, these modules must be processed by the Llnkage Editor to
match existing external references in the nodules with entry points in these
modules, or in modules in a user or syste' library (e.g. roitian system
modules) , t.o create an execuÈable progrérm.

If Èhe program is so large that it occupies most of the memory available during
executionr it is advisable Èo restruct,ure the program and divide iE lnto
segments with the overlay technique. This is necessary if the progran is too
big to fit in the available memory.

The Linkage Editor can handle both segmenEed and non-segmented programs.

The overlay technique nakes 1È possible to load into memory only those parts of
the program which are required at. a certain moment. Ihey will be overlaid when
their presence is no longer necessary.

Compared to a non-segment,ed program, a segmented program requi-res some extra
words which are added to the load nodule. At execution time, however, a
considerable memory space is gained.

The size of the Linkage Editor is approximately 5 pages of 2K words for the
Iongest paÈh of the Linkage Editor, plus the remaining free memory (up to 32K
words) for tables.

T75 3-3 I'tay 1983.

T75 3-4),Iay f 983 .

I"IULT I-},IODULE P ROGRA},IS

Programs may consist of more than one object module for one or more of the
following reasons:

Modular programming techniques have been used.
Part of Èhe program has been writ,ten in Fortran and part of it in Assernbly
Language.
An overlay program has been developed.

In all the above cases each source module has been assembled or complled
separately. Linking such a multi-module program involves:

Resolving inter-module references. EXTRN synbols in a module are replaeed
by the addresses of ENTRY sym.bols in oÈher modules.
Resolving any renaining unresolved references by scanning either the system
or user library, or both, to find the modules having ENTRY symbols
corresponding to Èhe unresolved EXTRN syrnbols. The modules selected by this
scan are automat,ically included by the Linkage Editor in the load module,
and each EXTRN syrnbol which caused Èhe scan is replaced by the address of
the ENTRY synbol in the module selected by the scan.
Positioning COI{N areas in the load nodule. Each labelled common is placed
at. Èhe end of the segment. containing the first module referring to it. All
blank commons are treated as the sarne area, and the Linkage Editor places
the largesË one encounEered at the end of the load module.

A blank couutron block can be irnplicitly allocated behind the longest paÈh of
the overlay structure, or explicitly at an absolut,e address.
Segmenting an overlay program according to user commands, using either disc-
resident or memory-resident overlay segments. The Linkage Editor rnay also
link several small modules into one larger one, which will be re-input at a
later date.

T75 3-5 May 1983.

T75 3-6 May 1983.

OVERLAY TECHNIQUE

This chapter contains a general description of the overlay technique and gives
some definitions of terms.

The overlay technique is a programming Èechnique which allows to reduce the
memory space needed for program execution.

The program's object modules must be linked and organised in such a way that
modules are loaded only when their presence is required. To chis end the
program is divided into segments.

To obtain this goal, a overlay tree structure can be designed which is the
graphical representation of the program's organisation.

Segment

A segment. is a part of the program and consists of one or more modules. Each
segment is separated from anoÈher segment on Ëhe LKn input file by a NOD record.

A program may consist of up to 128 segrnents. The order in which they are
placed on the Linkage Editor input file is deternined by the user, and depends
on the program and the references the segments may make among each other.

Disc-Resident Overlay

A disc-resident overlay is a segment kept on Ehe disc as part of the generated
load rnodule. It is loaded into Èhe program area when required, and is in turn
overwrit,ten by the next, overlay segment when no longer needed.

I"lemo ry-Re s ident Overlay

A memory-resident overlay (ROV) is a segmenL which is loaded at machine
definition time and then remains in rnernory. The MMU Page Table is manipulaÈed
by the MAS system in order to bring the segment into t,he program-visible area,
or to remove it when no longer required. Each ROV segment of a program forms
one secondary load module.

If a ROV segment is re-ent,rant, it rnay be used by more than one program
sinultaneously.

Root

An overlay structure has as its basis a root, which is that part
Ehat \.ri11 always be in memory as 1È exercises the control of the
must be the first segment on the LKE input file.

Path

of the progrirxr
program. It

The branches of the tree, called paths, constituÈe, together with the root, the
way along which t.he progran is executed. Each path of t.he tree consists of one
or more segments. A path is terminat,ed when, while seanning the input file:

the end of t,he objecc input file occurs, or
a NOD command is read which has the same name as a preceding NOD record.

No path may comprise segments whose cumulati.ve size exceeds 32K words.

T75 3-7 May 1983.

Node

Each segment on the input file, excep! for the root, cornmences with a node,
i.e. a NOD record. The NOD record has the following formaÈ:

NOD (nane>[r{<ROV segment name) | *}t,(absolute address)]l

where (name) may consist of up to 6 ASCII characters of which the flrst one
must be a letter, specifying the name given to this node. Different segments
may use the same node-name.

(ROV segment, name), if present, specifies expllciÈ1-y the name of the ROV
segmenÈ being started.
* (if present,) tells the Linkage Editor to allocate an inplicit name to the

ROV segment.
(absolute address), if present,, speclfies Èhe absolute address at which Lhe

ROV segnent will be loaded. D,oing this nakes it possible for more Ëhan one
program to share the segment,.

If only the (name) parameter is presenË, the node defines the sËart, polnt of a
disc-resident overlav.

Level

The level of a segment in a path is the ntmber of nodes between that segment
and Èhe root in a paÈh.

Ascendant

In a path, segments with a lower level are called ascendant.s.

Descendant

In a path, segments wiÈh a higher level are called descendants.

Exclusive

A segment locat,ed in another paÈh ls cal-led excluslve.

Example

A program consists of 10 modules whlch we will label A through J. 0f these
modules, A and B forn the root (segnent 0).

In the program we can distingulsh 6 paths and 9 segment,s (root, incl-uded).
Segment,s 0, 3 and I are built of more than one module. Ihe paths are:

3-8T75 May 1983.

A A l-o
_-

t

ls0 l

r--------llB It_llD Ils2 Itlt_llF Itl
ls6 lItt---l

T-e -tls0 lt--------lIn Il_--llE Itl
l-------llr Itllsrlrltl
l--------llr Itlt--l

l-o -- t

ls0 I

r--------lIn
It-----llD I

ls2 lll
t____-llH Itltllselll
r--------llr Illrlrlttr-*--l

SO

S4

SO s0

32

B

-e--
s1

F-

lB It--llc I

lsrlt-_-_llc Irllsslt---l

B

D

Iis.
From

3-1 .

these

E:canple of Paths

paths the following overlay

37

Èree may be builË:

level 0
(root) SO

I

I NoDE I

level I

I NODE 2

I

level 2

parh I paÈh 2

Fig. 3-2. Exanple of Overlay

In this example, path I will
Segments 0 and I are already
Segments 2 and,6 will overlay

level 2

path 4 path 5

and then paÈh 2. Of the latter,
5 overlays Segment 4. In path 3
and so on.

S1 level I S2 level I S3

I nonr r
I

path 6

S4 s5 S6 S7

path 3

Tree

be executed first,
ln menory; Segment

Segnents I and 5,

3-9T75 t"lay 1983.

Exanple Showing RoV-Segrnents

The coumands down the left of the page produce the overlay structure on the
rlght, which is built up from the same modules as in the prevlous example:

INC A
INC B

NOD Nl
INC C

NOD N2,F
INC F
NOD N2,G
INC G

NOD NI
INC D

NOD N3,F
INC F
NOD N3,G
INC G

NOD N3
INC H
INC I
NOD Nl
INC E
INC I
INC J
LKE
OPT

I-

Fig. 3.3 Example with ROV Segments

The secondary load modules F and G are treated as identical wherever they occur.

A

I

lB
I

NI

I!'
N2

N3

G

G

T75 3-10 l,lay 1983.

P ROGMI"IMING CONSIDERATIONS

Ïhough no specific progranrning requiremenÈs are neeessary to have a successful
linking and production of a segnented program, the following rules should be
obeyed:

Segmented programs are not re-enËrant, as segments will be overlaid during a
run. Only the root, and blank common are never overlaid.
Avoid references to exclusive segments.
Avoid excessive loading, overlaying and reloading of segments; otherwise the
progran wlll run very slowly.
Use common areas as often as possible for inter-nodule connunication.
Overlay programs to be run in a foreground machine must not be declared by
an FCL RON connand. In other words, Èheymay be niddle-ground, menory-
resi.dent (declared by FCL LOD or FCL REP) or snappable (declared by FCL SI^IP).
It is not possible to return to the interrupted program part, by means of an
RTN lnstruction or RETURN st.atement, from an exclusive segment if that
segment, has been called by a CF instruction or CAJ.L statement. The reason is
thaË the stack may not contain the right lnformation for a proper return, as
the segmenÈ is overlaid by the exclusive segment.

The segment causing the overlay (by a CF instruction) is not reloaded at the
return fron the exclusive segmenË.
A block data subprogram must be in the segment wiÈh the highest level using
the conmon.

T75 3-11 l,lay 1983 .

CALL TIIE LINKAGE EDITOR

The input file for the Linkage Editor can be created using the standard
processors ASM or FRT, and with the BCL INC and NOD commands. The first time
the objeet file is used in a Job it is created in the area for the :JOB DAD and
Userid, and is assigned Èo filecode /D5. Subsequent object modules will be
added to the end of the file by BCL INC commands, or ASM or FRT processor calls.

The object file is removed by the BCP fron the background machine filecode
table when the Job ends. This will also free the granules on the DAD.

Since the object modules on the file may make references Èo other modules in
the user or systeû library or to both, these libraries have to be scanned by
the processor to look for missing references. To facilitate this scanning, an
object library directory is created and kept up to date each time a module is
kept with a KOI"I command or deleted by a DOB connand, The directory is placed in
the object module library by Èhe system.

SEGI"IENTED PROGRAI'{

To produce a segmented load module, the program modules must be placed on Lhe
object file according Èo the overlay design. The first segment on the file must
be the root. Next, the following segments must be loaded, as foll-ows:

When several (exclusive) segment.s have the same immediate ascendant, their
common beginning location is called a node. To define the node on Èhe
object file a NOD command musÈ be given, specifying the name of the node.
The name is recorded as an ASCII record occupying one sector in the object
file and is used by the Linkage Editor, but it is not included in the load
module.
When several modules form one segmenÈ, as many ASM, INC or FRT commands may
be given as necessary, up to the next NOD command.

In this htay up to I28 segmenÈs may be specified for one run. At the end of
this Chapter, examples are given of how to proceed.

When all segmenLs are on the temporary object file, the Linkage Editor must be
called with Ehe BCL command input, frorn Ëhe device assigned Èo /n0 or /EE:

LKE IDUMP={ALL I PROG I NO}] [,StZn={r'IAX | (n)}]

The pararneter Dl[4P indicaLes whether a dunp must be nade after an abort or an
exit (LKLI 3).

ALL Dunp the Monitor and the background machine in case of an abort, or if
bit 8 is set in register A7 for LKl4 3.

PROG Dunp only the background machine.
N0 No dr:mp required. This is the Default.

The parameter SIZE reserves a work area of n pages of 2K words for the Linkage
Editor. It is only useful when the parameter SIZE is not specified in the
'Declare Batsh Processing lvtachine' command BCP.

MAX The systen will reserve 32K words (16 pages) of roork area for the
Linkage Editor.

n A number, rangi-ng from 0 through 16, specifying the ntrmber of
additional pages required as work areâ. Defauti = 0 pages.

T75 3-r3 Iaay 1983.

If the LKE comnand is accepted and /E0 is assigned t,o an interactive device
such as console keyboard or display, the message:

LKE:

is output to that device. The user may now lnput the OPT conmand described ln
this chapter.

If the LKE connand is rejected, then:
If /nO is assigned to an interactive device, a message explaining the error
is output on Èhis device, followed by the message:
LKE:

reguesting the user to enter the correct LKE command.

If /80 is assigned to a non-interactive device (such as a card reader), an
error message is output on the ERR device, followed by the message:
LKE:

requesÈing Èhe user to lnpuÈ the correct command fron the device assigned
to ERR.
Lf /nO is assigned to a non-interactive device and there is no ERR device
defined for thls Job, the error message is ouÈput to the device assigned to
/02 and the Linkage Editor exits. The BCP is reloaded and reads all
subsequeng semmands on /E0 unËil one of Èhe cornmands :EOJ, :EOB or :STP is
encountered.

Error l"lessages:

PARAM. NOT VALID Ïhe parameter is 1) erroneous
2) (n) greater than 16

PROCESSOR NOT CATALOGUED

DAD ASSIGN ERROR

I/O ERROR

SEARCH DIRECT. NOT POSSTBLE

LKE OPT STATEMENT

The OPf conÈrol statement, must be given inmediately after having called the
Linkage EdiËor with the LKE command, and must be present on the device assigned
to /E0 or /EE.

oPT ISTAF(nane>] [,CBLK=(addr)] [,çR3p={yES
[,sLrB={yEs I No | (nane)}] [,ut ts={yns
[,DBUG={ENTR I STAB I NONE]l [,cnUn={W

N0)lt,MAP={YES I N0}l
No | (name)l] [,cATIF<nane)]
OBi I t,KEEP=((ident list)) l

[,FRGF((ident list))] [,Oulrtvt=<nane)] [,DLST=<nane>] [,ltttC=1(ldent list))]
[,ROVP=(narne)] [,CnOV=(<ident lisr))]

STAD= (name) is the start address of the load module, which must be an entry
point in the rooË. Default = last start address encountered in the
root.

This option must be supplied if GENE=OB and neither KEEP nor FRGT is specified.

CBLK= (addr) is the absolute address of a blank common. The blank common is
loaded at the specified address. Only applies lf GENE=LM.
Default = last region address. (See also Map and Synbol Table.)

CR.EF= YES: a cross reference listing is printed.
NO: no cross reference llsting is printed. (Default.)

T75 3-14 Iray 1983.

MAP= YES: a
NO: no

MAP listing will be outpur.
MAP listing will be output. (Default.)

YES: ïhe system llbrary is scanned to resolve ext,ernal references.
Only applies if GENE=LI(.

No: the systen library does not need t.o be scanned. (oefault.)
(name): specifies the name of the system library to be-scannEd.

YES: the user library ttusRlrB" musÈ be scanned to resolve external
references. Only applies if GENE=LM.

N0: no user library needs to be scanned. (Oefault.)
(nane): specifies the name of the user libraryE-be scanned.

SLIB=

ULIB=

CATL=

DBUG=

GENE=

KEEP=

ONAM=

DLST=

INTC=

ROVP=

(name): the name
must consist. of
GENE=LM. Default

ENTR: a synbol table containing only
STAB: a symbol table, cont,aining all

Assembler, is generated.

specifies wheÈher a load rnodule (tll)
generated. Default = Ll'l.

under which the load module is caËalogued. (name)
I through 6 alphanurneric characters. ûnly applies if
= the file is not catalogued.

This debugging parameter is only usefur when a load module musÈ be
created which will be debugged. In a non-segmented program, all entry
points and commons are placed in the table which will be added to the
module. rn a segmented program, only the entry points of the root are
saved. rhe option only applies if GENE=LII. Default = NONE (no table).

entry poinÈ nâmes is generated.
synbols origlnally kept by the

or an object module (OB) is to be

specifi-es a list of entry names which have been resolved, but are to
be kept by the Linkage Editor. Only applies if GENE = OB; nay nor be
used if the FRGT option is present.
Default = only the start address is kept - see the STAD option.

FRGT= specif J-es
forgotten
kept. Only
presenË.
Default =

a lisÈ of entry n€unes
by the Linkage Editor.
applies if GENE = OB;

only the start address

which have been resolved, and may be
Entry names not in the list will be
may not be used if the KEEP option is

is kept - see the STAD option.

kept if
thE DBUG

specifies the name of the generated object module, up to six
alphanumeric characters. only applies if GENE = oB. Default = 'NONAME'.

specifies the narne of the generated internal synbol table, containing
the names of resolved entry points which are no longer known
externally. Only applies if GENE = OB. The table need only be
the final Link Edit for this generated object module will use
option. Default = no table is kept.

specifies t,he names of labelled common blocks which will be rnade
internal to Èhe generated object module. only applies if GENE = oB.

specifies a prefix of one or two letters for inplicit names of ROV
segments. For example, if the prefix is'XX', the Linkage Editor
assigns'XX00' Ëo the first ROV segment, 'XXOI' Èo the second, and so
on; ROv-segnents whose names are given explicitly in NOD stat,ements
are not counted. This option only applles if GENE = L1"1.

T75 3- 15 I,lay 1983.

CROV= specifies a list of RoV-segmenË namesl each ROV segnent is caÈalogued
under the current (userid) with the specified name, which then becomes
a secondary load moduLe name. This option only applies if GENE = L1"1.

Error Messages

When the OPT control staÈement is proeessed, one of the folJ-owing error
messages may be printed on the error message listing device:

I/o ERRoR (filecode) (starus)
KEYWORD OCCURRENCE ERROR

INCORRECT /D6 ASSIGNMENT 1) no source file could be assigned;
2) disc overflow

OPTION STATEMENT MISSING
IWALID KEYI^IORD
TI{ICE THE SAME KNYWORD

= NOT FOLLOIIING THE KEYI,IORD

, NOT FOLLOWING THE PARAI"IETER
INVALID BLANK COMMON BASE
INVALID START ADDRESS NA]"IE

INVALID USER LIBRARY NÆ{E
INVALID SYSTEI"T LIBRARY NA}'IE

INVALID USER LIBRARY ASSIGNMENT
INVALID SYSTEM LIBRARY ASSIGNMENT
INVALID DBUG KEYI^IORD VALUE
INCORRECT /lS ASSTCNMENT no object file could be assigned.
PARA}{ETER VALUE MISSING
INVALID INTEGER
/OS UoT AN OBJECT FILE
YES OR NO NOT FOUND

NO OBJECT CODE FILE
ERROR WHEN I{RITING AN EOF ON /D5
INVALID OPTION STATEMENT
INVALID PARAi{ETER FOR CATL OPTION

See also Fat,al and Non-Fatal Errors.

If an erroneous OPT control st,atement is given, the user may input the correct
one on Èhe device asslgned by ERR or on /E0.

PROCESSING-E processor sLarts reading the whole input file, sÈoring relevant
inforrnation in tables. All external references encountered during reading are
placed in a synbol table, at the same time lndicating whether the reference is
absolute or relative. The external references may consist of entry point,s and
labelled conmons.

The Linkage Editor nor^/ tries to match the references according to the overlay
structure of the program, obeying the following rules:

- References are first looked for in the segment. If Ëhey cannot be found in
the segment, the ascendants are searched and next the descendants. If a
double definition r^ras given in an ascendant, Ëhe first one encountered is
taken and a non-fatal error message is printed. If a reference is rnade to
one or more descending segments, t,he reference is defined the firsL tine it
is encountered. The external reference in that case is not replaced by the
enÈry point's address, but by the address of a llnk block which potnts to
the segment loader.

Lt) 3-16 May 1983.

Depending on whether the user has specified the relevant parameters or uses
the default, Èhe processor starts looking for the missing references in the
user library, Èhe sysEeû library, or in both (user library first).

Such a library has a directory containing all relevant infornation as given
in clusters 21 5, 6 and 7 concerning the entry points, externals or
coûrmons, in each module in the library file.

If the entry point is found in a library, the module which contains the
entry point is included in the prograrn. If the module in which Èhe ent,ry
point appears is referred to by more t.han one segment, the module is
included in the segment wlth the lowest level (i.e. nearest the root).

If the external reference is noË yet found after scanni.ng one or both
libraries, the Linkage Editor will look for it in the exclusives. As the
referencing to exclusives may cause stack problems, a warning message is
output,.

When the reference is found in an exclusive segment, t,he external is not
replaced by the address of the entry point but by the address of a link
block. Should the ent.ry point be present in more than one exclusive
segment, the first, tfutre the entry point is encountered is Eaken as the
definition. If the external reference is not resolved at all, an error
message is ouËpuÈ.

Processing of Comnons

Cornnons may be labelled or blank. The Linkage Editor processes them in
different ways:

Labelled Common

Labelled coûmons have a fixed lengt,h. Ihey are allocated by the processor at
the end of the segmenÈ in which Èhey are referenced. Consequently, they can be
overlaid during a program run, but Lhe initial values, given by a block data
subprogram, are reloaded each time Èhe segment is loaded.

When a reference is made to a labelled comnon whose label is used in several
segments, Èhe common is allocated to the segment hrlth the lowest level.

Blank Commgn

Ihe largest blank conmon encount,ered ln the program is placed aÈ Èhe end of the
program, and is never overlaid. The user must, however, take care not Èo
destroy this area rqhen he is using a Get Buffer request. Ihe beginning address
of this buffer must point to a location after the last address of the blank
eonmon. See also the example in Map and Spnbol Table.

hrhen the user has given an absolute address to a blank common, the blank common
ls locat.ed at the address specified.

LOAD I'IODULE

At the end of the processing a load module, segmented or not, is built. I^Ihen
the load module is generated, the object code is taken fron the modules on the
input file and relocat.able words and external references are replaced by their
real addresses.

T75 3-17 May 1983.

When a segmented program must be generated, the Linkage Editor adds, each Ëime
a segrenË ls creat,ed, a segmenË load bloek to the rooto This block contains
inforrnation on where the segnent is t,o be loaded, its length and the sect,or of
Èhe disc where the segment can be found.

The lasË segment load block is followed by a segment loader, which aL program
execuÈion time controls the loading of segments not already in memory.

NON-SEGMENTED PROGRAI'{

If the user wlshes Èo produce a non-segmented program, the Llnkage Editor
operates as lf all rnodules placed on /O5 by ASM, INC and/or FRT are a segment
of level 0. In fact, it should be consldered to have one path of one segment.
No NOD commands are used, and no segment loader or link block is added to the
load module.

OBJECT I'{ODULE OUTPUT

The user may wish to conbine several smaller object modules inËo one larger
object modul-e, which will be re-input to the Linkage Editor later on. The
Llnkage Edltor combines all Ehe object modules placed on the /O5 input file by
ASM, FRT or INC commands. The NOD statexûenÈ is meaningless and should not be
presenË.

the user may specify whlch ENTRY symbols, already resolved by EXTRNs, should be
kept in the entry point, table for the generated object module, and which nay be
f orgott,en.

T75 3-18 May 1983.

OUTPUT OF THE LINKAGE EDITOR

The output of the Linkage Editor consisËs of:

a load module
a MAP (optional)
a Symbo1 Table (oprional)
error messages.

LOAD MODULE

The load module is an executable program in object format. The nodule is
output on the load module file /n6. Each sector of the file cont,ains lgg code
words and a l2-word relocation table (RTB), of whi.ch:

bit. 0 of word 0 = I if the first word is relocatable, or
= 0 if the first word is absolute.

bit I of word 0 is associated with the second code word

blt 0 of word 1 is associated with rhe ITth code word
:
etc.

The first
locations

I^lord 0 for non-segmented programs:
Prograrn start address.
for segenented programs:

Program st.art address increased by l, pointlng t,o a location in
the rooÈ.

llord 2 for non-segmented programs :

Nuober of sectors on the disc occupied by the load module.

for segmented programs:
Number of secÈors on the disc occupied by the root.

Effective length of the load module (blank conmon, if not given
an absolute address, included).

Synbol Table address.I,Iord

l{ord for non-segmented programs:
First code word of the first module of
for segmented programs:

the progran.

be longer than the
in MAP and Synbol Table).

I^Iord 4

I{ord A

6

8

six code words of the load nodule, which are stored in the first
of the program, have t,he followlng neaning(s):

Length of the program area (which may
effective progran length; see example

for seguented programs only:
The number of segments of the program, the root not included. The
following n * 4 words contain n segment, load blocks. The last 4-
word item is followed by the Segment Loader.

3-r9T75 May 1983.

MAP AND SYMBOL TABLE

An example of a I,IAP is given at the end of this Chapter; it contains the
followlng items:

START Start address of the program.
LENGTH Length, in characters, of the longest path.
REGION The length of Èhe longest paÈh as loaded from n secÈors. Since the

segments are loaded one disc sector at a time, an enÈire secÈor may
therefore have been loaded without that sect,or bei.ng completely fllled
wiËh the contents of a segment,.

tl REGIONrl tl
last sect,or
of segment area destroyed when loading

segment, but not used at
| | run time.

common

Fig. 3.1 E:rauple of Region

Example:

Ihe following exanples explain the difference between the length and the
region. The first, program contains an absolute blank common and in the other
example the program contains a relocatable blank comnon.

Absolute Blank Conrmon

I

I

Length
I

I

Progran

unused
sector space

absolute
blank
common

Region

llere Length (Region, but
it rnay happen that Length
= Region if all sectors
were enÈirely used.

T75 3-20 May 1983.

Reloeatable Blank Common

I

IProgram I

I Region
I

I

-----l
unused I

sector space I I

-----t
I

relocatable
I

blank I

conmon I

I

-----l
Dynamic I first Address of
Allocation I Cet Buffer.
Area I

Fig-. 3.L Exanples of Length and Region

Then the segments are printed in ascendlng level number order, where:

SEGMENT ll mrnber of the segment in the overlay tree
ADDR-ESS /l address of the segment in memory
SECTOR /lt number of the sector in which the segment is written
ASCENDANT // nunber of the segment's irnnediate ascendant. For the root thls is

always /FF.

Then the IDENT of each module in Èhe segment is printed, with the module
address.

Ihe list of segments is followed by the Symbo1 Table. All entry points and
common blocks belonging to a segment are listed in alphabetical- order.

The symbol table is built of the following it,ems over 4 eolumns:

TYPE SEGMENT ADDRXSS NAME

where:

TYPE A = absolute entry point
B = absolute address of blank common as given in the OPT statement
C = relocatable blank or labelled conrnon
D = synbol table entry point
E = relocatable ent,ry point.

SEGI,IENT number of the segment, in which the synbol appears.

ADDRESS address of the syrnbol.

NAME entry point name. If the same name is defined in several segments, the
name is printed each time iÈ is encountered, but with a different
segment number.

3-2I May 1983.

Length

T75

ERROR MESSAGES

During and after processing, error Eressages nay be printed which may or may not
influence t,he processlng and outpuË of a correct load module. At the end of
processing the nunber of errors are printed, lf there were any, followed by the
error message(s).

Fatal Errors

Fatal errors cause the temporary load module file to be scratched; no load
nodule is produced.

CORE OVERFLOII noË enough space for the Processor'
DIP.ECTORY AND SYSTEI'I LIBMRY NOT CONSISTENT
DIRECTORY AND USER LIBMRY NOT CONSISTENT
END MISSING (EOF FOLLO}IING IDENT)
END MISSING (NOD FOLLOIIING IDENT)
END MISSING (2 CONSECUTIVE IDENT)
FIRST ROOT RECORD IS EOF
IDENT MISSING (END FOLLOWING NOD)
IDENT }TISSING (EOF FOLLOI^IING NOD)
IDENT MISSING (FIRST OF ROOT)
IDENT },IISSING (2 CONSECUTIVE NOD)

IDENT OR NOD F.ECORD }4ISSING OR INVALID
I/O ERROR <ECBO> <ECB8>
NOD NOT ALLOI.IED BEFORE TI{E ROOT

PROGRAM LENGTTI EXCEEDS 32K
2 CONSECUTIVE NOD

KEYWORD OCCURRENCE ERROR

INCORRECT /O6 RSSTCNMENT
OPTION STATEMENT },[SSING
INVAIID KEYI^IORD

ÎI^IICE THE SAME KEYVTORD

= NOT FOLLOTIING THE KEYI^IORD

, NOT FOLLOI4TING THE PARAI{ETER
INVALID BLANK COMI"ION BASE

INVALID START ADDRESS NAME

INVALID USER LIBRARY NA},IE
INVALID USER LIBRARY ASSIGNMENT
INVALID SYSTEM LIBRARY NAME

INVALID SYSTEM LIBRARY ASSIGNMENT
INVALID DBUG KEYWORD VALUE
INCORRECT /D5 ASSIGN}MNT
PAM}.{ETER VALUE MISSING
INVAJ,ID INTEGER
/O5 TIOT ASSIGNED TO AN OBJECT FILE
YES OR NO NOT FOUND

NO OBJECT CODE FILE
ERROR WI{EN WRITING AN EOF ON /D5
INVALID OPTION S?ATEMENT

INVALID PARAMETER FOR CATL OPTION
NO PREFIX SPECIFIED FOR ROV SEGMENT

ROV SEGMENT IS NOT A LEAF
INVAITD ROVP KEY I{ORD VALUE
IMPOSSIBLE TO ASSIGN FILECODE /Dl FOR SECONDARY LOAD MODULE

TEMPORARY FILECODE /OT TON SECONDARY LOAD MODULE CANNOT BE DELETED

T75 3-22 May 1983.

Non-Fatal Errors

These errors are, in facË, warning messages for the user. T1he Linkage Editor
continues processing, but the produced l-oad module may or may not. be
executable. The hexadecinal ntrmber of errors is prinËed on the listing device
assigned to /02 and on the operator's console, aft.er processing.

ABSOLUTE ADDRESS IN MODULE (name) SEGI"IENT (number)
ABSOLUTE START ADDRESS IN MODULE (name)
DOUBLE DEFINITION ON (narne) Ihe firsr one is Èaken.
ERROR IN IVIODULE (name)
EXCLUSIVE R-EFERINCE FROM SEGMENT (no) TO (narne) IN SEGMENT (no)
NO START ADDRESS

REF. TO UNSATISFIED EXTERNAJ, (name) IN SEGMENT (no) AT ADDRESS (no)
ïhe address is relat,ive to the beginning of the segmenÈ,

UNDEFINED START ADDRESS NAME
The name specified in the OPT statemenÈ is not defined in the rooÊ.

(no) UNSATISFIED EXTERNAL REFERENCE
(no) is in hexadecimal. The symbol Eable indicates which external
references could not be matched, by printing an asterisk.

ROV ADDRESS IS NOT A PAGE BOUNDARY

SEVERITY CODES

A severity code is output on the listing device when the Linkage EdiÈor's
processing is terrninated.

0 Normal exit.

/tO The load file has been produced, but some minor errors, such as
unresolved external references, occurred.

/3O The load file has not, been produced; an error message from the Linkage
EdiÈor has been output Èo filecode /OZ.

/ 40 The Linkage Editor did not start processing because of an assignment
error or invalid OPT statement. An error message has been output to
filecode /01.

Examples

Two exanples are given of how Èo proceed when a non-segmented or a segmented
program must be produced. Each example is followed by a MAP and by a Symbol
Table. The source modules are cat,alogued modules in M!{SC:l of DAD SSDOC2.

DCB 16
FCD /E0,CR06
FCD /1,TY10
FCD /C0 Batch l"lachine declaration
FCD /Cl
FCD /C2
FCD /C3
FCD /2,LP07
FCD /82,PR20
FCD /FO ,/ CO,SUPERV
ECD /F2,/CO,SSDOCI
FCD /F3 ,/ CO,SSDOC2
DEN

BYE BATCH

175 3-23 May 1983.

followed by the :JOB command:

:JOB USID=MIISC: I ,DAIF/F3

Next the conmands for ASM and OPT are given:

ASM
OPT PROG=M: CMDS .LIST=NO
NOD LEVO
ASM
OPT PROG=M: CASS,LIST=NO
ASl,l
OPT PROG=I'I: CATLIST=NO
ASM
OPT PROFM:CC,LIST=NO
NOD LEVI
ASM

OPT PROG=M:MESS,LIST=NO
NOD LEVz
AS}T

OPT PROG=LI: G0 TLIST=NO
ASI"l

OPT PROG=I"I: PRNT,LIST=NO
ASM
OPT PROFl"l : LIST,LIST=NO
AS},I

OPT PROFM:EDIT,LISFNO
NOD LEV3
ASI"l
OPT PROG=M: SCRT,LIST=NO
ASM

OPT PROFM : TERM,LIST=NO

assenbled source rnodules are norù on the object fi1e, which is the input for
Linkage Editor.

LKE
OPT MAP=YES, SLIB=NO,ULIB=NO, CATL=EDITING

The
the

T75 3-24 May 1983.

The MAP is:

START 3 O24C LENÊTH =5F6O REGION =éOt4XJ** OVERLAY STRUCTURE ***

*** LEVEL* O *fÉx

SEGHENT + OO ANI'RESS = OOBE SECTOR * OOOO ASCENFANT * FF
M: Cl.ltrs ooBS

SEGI,IENT * 01
t'î: cAss o4â8

*** LEVEL* 1 xxx

AtrtrRESS = 0468 SECT0R * OOO3 ASCENTTANT t OO
i"l: cA 04E8

*** LEVEL

I'l ! cc o56A

SEGMENT * O?
tt: HEss 0660

AtrtrRESS = 0é60

? ***

sEcToR * ooos ASCENnANT * 01

,(*x

AtrtrRESS
}'I ! PRNT OA4E

AnttRESS
M ! ÏERI,I SFOE

+

LEVEL * 3 ***

= 0?64 SECTOR * OOO8
].t3LIST 1026

ASCENTIANT * O?
il:EnIT 5938

SEÊHENT * 03
l'1: GO 096A

SEG|{ENT + 04
t'l: SCRT 5E7E

0332 ETELL?
4Cl0 ETUFCHI
O34A CHKTAB
514? COMPRE
01F? E:t{RTl
O?éA FLAGTCI
OE84 M ! ATtl
056A M:CC
4CTIA M!LIST
5EA6 H:SCRS
SEFA M:SCR7
oo['o NoSIGN
OB1E PRÏTY
OEO? STRNG
5546 SYMB3
0618 SYMBT

E OO O33E
E 03 4C34
E 03 5470
E 03 0988
E 03 5938
E 03 1184
E 03 OEEA
E OO O?4C
E 02 0920
E 04 SEBA
E 04 5E7E
E 03 0452
E 03 OAB2
E 03 0BO4
[' 03 OËBE
[' Ol 0544

LEUEL *

= 3E7E

sYl-lBoL

EELL4 E
E UFCT{? E
CKCilNg E
COPYAl E
ENTFLG E
I NT]XBF E
M ! ATI?4 E
H ! Ci.,ltts E
l-1r HESS E
M:SCR4 E
I't: SCRT E
NUÈIBUF E
R EETUF 1 E
STRNG? N

sYl{tt4 [l
sYH88 Ë

TABLE *x*

oo 0138 EUF?
oo o31? cAss?
oo ooE6 cl'lnBUF
oo olrrA ETBUF1
OO O31E ECIFREI.I
03 OASA LINETTF
01 0488 M:CA
03 5448 l'1 : Etr I T
03 OB4A I"I:PRNT
04 SECE l.l:SCRS
04 SFOE l.llTERt'l
03 1OCE PAGT{UF
03 OATIA REEUF?
OO O36g SYi,,lBl
o? o?4? sYt"rE{5
oo 0306 vCILUl'îE

o18A BUF3
O4B? CHKECIV
ooBS cllncAR
o1E6 E:REnl
0468 FLAGCT
OA4E LINFLG
046A I'l I CASS
o96C Èt r 60
5Ë9? l.t ! scRS
5EE4 Fl: SCR6
O35O l'l: TOP
OE{Oé PRTBUF
oËt70 SEARCH
o4cE SYHB?
oAlE SYI'186

4 *x*

SECTOR * OO42 ASCENTIANT + 03

and the Synbol Table is:

oo
01
oo
oo
o1
o3
ol
03
04
Q4
oo
o3
o3
o1
o3

EOO
803
EOO
E03
EOO
E03
E03
EOl
E03
E04
E04
EOO
E03
E03
rr 03
[r 01

E
E
E
E
E
E
E
E
E
E
E
E
E
R

tl

May 1983.T75 3-25

If the same modules are Link-Edited without NOD commands, the following MAp and
Synbol Table are output:

START = 5tt4A LENGTH =589C REGICIN =5EtEX** OVERLAY STRUCTURE **àT

xr(* LEVEL * o ***
SEGMENT +

l.r ! cHns ooo8
M!MESS 0500
l.l!EltIT 57[rg

M:GO OBOA
t"t:$ÇRT SCEIA

l'l: PRNT O'EE
1.1! TERl.l 5tr4A

SYI,IBOL TAEILE X**

ASCENTIANT T FF
t'l ! CC O41A
l'l ! LIST OEC6

OO ADITRESS = OO0g SECTCIR * OOOO
È1 ! CASS O31B M : CA 0398

E
E
E
E
E
E
E
E
E
E
H

Ë

E
E

n
n

oo ot82
oo 4Aco
oo o?9A
OO 4FË?
oo o14?
oo o80A
oo on?4
oo 04LA
oo 4147à
oo 5cE3
oo 5n36
oo oo30
oo o9E{E
oo o9A?
o0 5386
oo o4c8

BELL?
BUFCH 1

CHKTAB
COÈlPRE
EIHRT1
FLAGGO
l'l: Alrl
M: CC
i,ttLIST
H ! $CR3
l,l: scR 7
NCIS T GN
PR TTY
STRNG
SYMBS
sYl.,1B7

**tÉ

E OO OTBE
E OO 4âF4
E OO 5910
E OO 0858
E OO gTng
E O0 L0?4
E OO Ot'?A
E OO O19C
Ë oo oTco
E OO 5CF6
E OO SCFA
E OO O8F?
E OO O95?
E OO O9A4
Ir OO 0tr5E
n oo 03F4

BELL4
FUFCH?
cKcl.ltts
COP YA I.
ETITFLG
TNNXBF
M: AN?4
i,t : cHtts
1,1: ttEss
1.1 : scR 4
M:SCRT
NUI'1BL'F
REBUFl
STRNG?
sYr.tB4
sYt{88

E OO OOBS
E OO 026?
E OO 0036
E OO O13A
E O0 0?6E
E OO OSFA
Ë oo 0398
E OO 58Eg
E OO O9EA
E OO StrOA
E O0 5rr4A
E OO OF6E
E OO O?7à
n oo o?88
n oo o7E?
E OO 0?56

ttuF?
cAss?
ciltrBUF
E!EIUFl
EOFREI.I
LTNEBF
M!CA
I.I: ETITT
T'I!PRNT
M ! SCRS
l,l ! TERI'l
PAGBUF
REBUF2
sYl,tBl
5YHB5
voLut{E

E OO OOtrA
E OO 03é?
E OO 0008
E OO Ot36
E OO 0318
E OO OEEE
E OO O31A
E OO oBOC
E OO SCCE
E OO 5n?O
E OO O2AO
E OO O9Aé
E OO OA10
n oo o37E
D OO OSEE

BUFS
CHKEOV
cilDcAR
E:REtrl
FLAGCT
LINFLG
il ! cAss
l.l ! G0
M: SCR?
M: SCR6
I.,I: TOP
PRTBUF
SEARCH
sYl,tB?
5Yl,rB6

3-26'ït J l,Iay 1983.

